Maximum-entropy description of animal movement.

We introduce a class of maximum-entropy states that naturally includes within it all of the major continuous-time stochastic processes that have been applied to animal movement, including Brownian motion, Ornstein-Uhlenbeck motion, integrated Ornstein-Uhlenbeck motion, a recently discovered hybrid of the previous models, and a new model that describes central-place foraging. We are also able to predict a further hierarchy of new models that will emerge as data quality improves to better resolve the underlying continuity of animal movement. Finally, we also show that Langevin equations must obey a fluctuation-dissipation theorem to generate processes that fall from this class of maximum-entropy distributions when the constraints are purely kinematic.

[1]  M. Hooten,et al.  Velocity-Based Movement Modeling for Individual and Population Level Inference , 2011, PloS one.

[2]  Peter Leimgruber,et al.  Non‐Markovian maximum likelihood estimation of autocorrelated movement processes , 2014 .

[3]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[4]  Stephen M. Krone,et al.  Analyzing animal movements using Brownian bridges. , 2007, Ecology.

[5]  James E. Dunn,et al.  Analysis of Radio Telemetry Data in Studies of Home Range , 1977 .

[6]  C. Broadbent,et al.  Solving non-Markovian open quantum systems with multi-channel reservoir coupling , 2011, 1112.2716.

[7]  Peter Leimgruber,et al.  From Fine-Scale Foraging to Home Ranges: A Semivariance Approach to Identifying Movement Modes across Spatiotemporal Scales , 2014, The American Naturalist.

[8]  R. Kubo The fluctuation-dissipation theorem , 1966 .

[9]  A. Leggett,et al.  Path integral approach to quantum Brownian motion , 1983 .

[10]  H. Callen,et al.  Irreversibility and Generalized Noise , 1951 .

[11]  J. Taylor,et al.  Equilibrium states of open quantum systems in the strong coupling regime. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  D. Brillinger,et al.  Elephant-seal movements : Modelling migration * , 1998 .

[13]  Bart Kranstauber,et al.  A dynamic Brownian bridge movement model to estimate utilization distributions for heterogeneous animal movement. , 2012, The Journal of animal ecology.

[14]  Eliezer Gurarie,et al.  Characteristic Spatial and Temporal Scales Unify Models of Animal Movement , 2011, The American Naturalist.

[15]  W. Marsden I and J , 2012 .

[16]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[17]  R. Mazo On the theory of brownian motion , 1973 .

[18]  Devin S Johnson,et al.  Continuous-time correlated random walk model for animal telemetry data. , 2008, Ecology.

[19]  A. Roura,et al.  Nonequilibrium fluctuation-dissipation inequality and nonequilibrium uncertainty principle. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  B. West,et al.  Statistical properties of quantum systems: The linear oscillator , 1984 .

[21]  Paul G. Blackwell,et al.  Bayesian inference for Markov processes with diffusion and discrete components , 2003 .

[22]  M. Vainstein,et al.  Entropy, non-ergodicity and non-Gaussian behaviour in ballistic transport , 2007, Europhysics Letters (EPL).

[23]  Lian-Ao Wu,et al.  Perturbation methods for the non-Markovian quantum state diffusion equation , 2014, 1407.4178.