Maximum-entropy description of animal movement.
暂无分享,去创建一个
[1] M. Hooten,et al. Velocity-Based Movement Modeling for Individual and Population Level Inference , 2011, PloS one.
[2] Peter Leimgruber,et al. Non‐Markovian maximum likelihood estimation of autocorrelated movement processes , 2014 .
[3] A. Einstein. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.
[4] Stephen M. Krone,et al. Analyzing animal movements using Brownian bridges. , 2007, Ecology.
[5] James E. Dunn,et al. Analysis of Radio Telemetry Data in Studies of Home Range , 1977 .
[6] C. Broadbent,et al. Solving non-Markovian open quantum systems with multi-channel reservoir coupling , 2011, 1112.2716.
[7] Peter Leimgruber,et al. From Fine-Scale Foraging to Home Ranges: A Semivariance Approach to Identifying Movement Modes across Spatiotemporal Scales , 2014, The American Naturalist.
[8] R. Kubo. The fluctuation-dissipation theorem , 1966 .
[9] A. Leggett,et al. Path integral approach to quantum Brownian motion , 1983 .
[10] H. Callen,et al. Irreversibility and Generalized Noise , 1951 .
[11] J. Taylor,et al. Equilibrium states of open quantum systems in the strong coupling regime. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.
[12] D. Brillinger,et al. Elephant-seal movements : Modelling migration * , 1998 .
[13] Bart Kranstauber,et al. A dynamic Brownian bridge movement model to estimate utilization distributions for heterogeneous animal movement. , 2012, The Journal of animal ecology.
[14] Eliezer Gurarie,et al. Characteristic Spatial and Temporal Scales Unify Models of Animal Movement , 2011, The American Naturalist.
[15] W. Marsden. I and J , 2012 .
[16] Robert Haining,et al. Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .
[17] R. Mazo. On the theory of brownian motion , 1973 .
[18] Devin S Johnson,et al. Continuous-time correlated random walk model for animal telemetry data. , 2008, Ecology.
[19] A. Roura,et al. Nonequilibrium fluctuation-dissipation inequality and nonequilibrium uncertainty principle. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.
[20] B. West,et al. Statistical properties of quantum systems: The linear oscillator , 1984 .
[21] Paul G. Blackwell,et al. Bayesian inference for Markov processes with diffusion and discrete components , 2003 .
[22] M. Vainstein,et al. Entropy, non-ergodicity and non-Gaussian behaviour in ballistic transport , 2007, Europhysics Letters (EPL).
[23] Lian-Ao Wu,et al. Perturbation methods for the non-Markovian quantum state diffusion equation , 2014, 1407.4178.