Inhibition of Dll4/Notch1 pathway promotes angiogenesis of Masquelet’s induced membrane in rats

[1]  Matthew Albert,et al.  Tips and Tricks , 2020, Clinics in Colon and Rectal Surgery.

[2]  M. Simionescu,et al.  Synergic effects of VEGF‐A and SDF‐1 on the angiogenic properties of endothelial progenitor cells , 2017, Journal of tissue engineering and regenerative medicine.

[3]  S. Pannier,et al.  Vascularised fibula or induced membrane to treat congenital pseudarthrosis of the Tibia: A multicentre study of 18 patients with a mean 9.5-year follow-up. , 2017, Orthopaedics & traumatology, surgery & research : OTSR.

[4]  Zhao Xie,et al.  Induced membrane technique: Advances in the management of bone defects. , 2017, International journal of surgery.

[5]  I. Marzi,et al.  Establishment and characterization of the Masquelet induced membrane technique in a rat femur critical‐sized defect model , 2016, Journal of tissue engineering and regenerative medicine.

[6]  C. Mauffrey,et al.  Reconstruction of Long Bone Infections Using the Induced Membrane Technique: Tips and Tricks , 2016, Journal of orthopaedic trauma.

[7]  Andrés J. García,et al.  Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. , 2015, Advanced drug delivery reviews.

[8]  Y. Terzi,et al.  Inhibition of the Notch Pathway Promotes Flap Survival by Inducing Functional Neoangiogenesis , 2015, Annals of plastic surgery.

[9]  R. Bareille,et al.  Comparative study of membranes induced by PMMA or silicone in rats, and influence of external radiotherapy. , 2015, Acta biomaterialia.

[10]  H. Schreuder,et al.  Hemicortical resection and inlay allograft reconstruction for primary bone tumors: a retrospective evaluation in the Netherlands and review of the literature. , 2015, The Journal of bone and joint surgery. American volume.

[11]  H. Isaksson,et al.  The masquelet induced membrane technique with BMP and a synthetic scaffold can heal a rat femoral critical size defect , 2015, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[12]  J. Aurégan,et al.  Induced membrane for treatment of critical sized bone defect: a review of experimental and clinical experiences , 2014, International Orthopaedics.

[13]  Y. Shen,et al.  Histological characteristics of induced membranes in subcutaneous, intramuscular sites and bone defect. , 2013, Orthopaedics & traumatology, surgery & research : OTSR.

[14]  Hannu-Ville Leskelä,et al.  The mechanism of action of induced membranes in bone repair. , 2013, The Journal of bone and joint surgery. American volume.

[15]  R. Pho,et al.  The reconstruction of large bone defects in the upper limb. , 2013, Injury.

[16]  N. Zwetyenga,et al.  Technique des membranes induites en chirurgie maxillo-faciale , 2012 .

[17]  Yong-jun Wang,et al.  DAPT protects brain against cerebral ischemia by down-regulating the expression of Notch 1 and Nuclear factor kappa B in rats , 2012, Neurological Sciences.

[18]  J. Sales de Gauzy,et al.  Intercalary Segmental Reconstruction of Long Bones After Malignant Bone Tumor Resection Using Primary Methyl Methacrylate Cement Spacer Interposition and Secondary Bone Grafting: The Induced Membrane Technique , 2011, Journal of pediatric orthopedics.

[19]  A. Masquelet,et al.  La technique de la membrane induite pour les pertes de substance osseuse de la main et du poignet , 2010 .

[20]  P. Cronier,et al.  Two-stage reconstruction of post-traumatic segmental tibia bone loss with nailing. , 2010, Orthopaedics & traumatology, surgery & research : OTSR.

[21]  P. Giannoudis,et al.  Current management of long bone large segmental defects , 2010 .

[22]  M. Wolzt,et al.  Reduction of both number and proliferative activity of human endothelial progenitor cells in obesity , 2010, International Journal of Obesity.

[23]  M. Mattson,et al.  Involvement of Notch Signaling in Wound Healing , 2007, PloS one.

[24]  T. Gridley Notch signaling in vascular development and physiology , 2007, Development.

[25]  M. Iruela-Arispe,et al.  Notch signaling in blood vessels: who is talking to whom about what? , 2007, Circulation research.

[26]  G. Thurston,et al.  Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting , 2007, Proceedings of the National Academy of Sciences.

[27]  Holger Gerhardt,et al.  Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis , 2007, Nature.

[28]  J. Liao,et al.  Serveur Académique Lausannois SERVAL serval.unil.ch , 2022 .

[29]  Minhong Yan,et al.  Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis , 2006, Nature.

[30]  Gavin Thurston,et al.  Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis , 2006, Nature.

[31]  S. Bray Notch signalling: a simple pathway becomes complex , 2006, Nature Reviews Molecular Cell Biology.

[32]  V. Dzau,et al.  Essential Role of ICAM-1/CD18 in Mediating EPC Recruitment, Angiogenesis, and Repair to the Infarcted Myocardium , 2006, Circulation research.

[33]  A. Harris,et al.  Up-regulation of the Notch ligand Delta-like 4 inhibits VEGF-induced endothelial cell function. , 2006, Blood.

[34]  Janet Rossant,et al.  Endothelial cells and VEGF in vascular development , 2005, Nature.

[35]  Christopher C W Hughes,et al.  Cell‐autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis , 2005, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[36]  A C Masquelet,et al.  Induced membranes secrete growth factors including vascular and osteoinductive factors and could stimulate bone regeneration , 2004, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[37]  N. Ferrara,et al.  The biology of VEGF and its receptors , 2003, Nature Medicine.

[38]  Yan Li,et al.  Regulation of Notch1 and Dll4 by Vascular Endothelial Growth Factor in Arterial Endothelial Cells: Implications for Modulating Arteriogenesis and Angiogenesis , 2003, Molecular and Cellular Biology.

[39]  F. Fitoussi,et al.  [Reconstruction of the long bones by the induced membrane and spongy autograft]. , 2000, Annales de chirurgie plastique et esthetique.

[40]  J. Isner,et al.  Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. , 1999, Circulation research.

[41]  S. Bruder,et al.  Mesenchymal stem cells in bone development, bone repair, and skeletal regenaration therapy , 1994 .

[42]  N. Athanasou,et al.  Polymethylmethacrylate-induced inflammatory macrophages resorb bone. , 1992, The Journal of bone and joint surgery. British volume.

[43]  J. Aronson,et al.  Local bone transportation for treatment of intercalary defects by the Ilizarov technique. Biomechanical and clinical considerations. , 1989, Clinical orthopaedics and related research.

[44]  S. Morimoto,et al.  Induced membrane technique using beta-tricalcium phosphate for reconstruction of femoral and tibial segmental bone loss due to infection: technical tips and preliminary clinical results , 2017, International Orthopaedics.

[45]  渡部欣忍 感染性偽関節:induced membrane techniqueを用いた新時代の治療 , 2017 .

[46]  J. Fricain,et al.  [Induced membrane technique in oral & maxillofacial reconstruction]. , 2012, Revue de stomatologie et de chirurgie maxillo-faciale.

[47]  A. Masquelet,et al.  The concept of induced membrane for reconstruction of long bone defects. , 2010, The Orthopedic clinics of North America.

[48]  L. Obert,et al.  [Induced membrane technique for bone defects in the hand and wrist]. , 2010, Chirurgie de la main.

[49]  J. Lian,et al.  Effects of bone matrix components on osteoclast differentiation. , 1989, Connective tissue research.

[50]  A. Osterman,et al.  Free vascularized bone grafting for large-gap nonunion of long bones. , 1984, The Orthopedic clinics of North America.

[51]  Bora Fw,et al.  Free vascularized bone grafting for large-gap nonunion of long bones. , 1984 .