Human EEG very high frequency oscillations reflect the number of matches with a template in auditory short-term memory

[1]  Christoph S. Herrmann,et al.  Gamma oscillations in gerbil auditory cortex during a target-discrimination task reflect matches with short-term memory , 2008, Brain Research.

[2]  J. Rieger,et al.  Stimulus intensity affects early sensory processing: visual contrast modulates evoked gamma-band activity in human EEG. , 2007, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[3]  Ingo Fründ,et al.  Stimulus intensity affects early sensory processing: sound intensity modulates auditory evoked gamma-band activity in human EEG. , 2007, International Journal of Psychophysiology.

[4]  Christoph S. Herrmann,et al.  EEG oscillations in the gamma and alpha range respond differently to spatial frequency , 2007, Vision Research.

[5]  Christoph Herrmann,et al.  Simulating Evoked Gamma Oscillations of Human EEG in a Network of Spiking Neurons Reveals an Early Mechanism of Memory Matching , 2007 .

[6]  N. Busch,et al.  Gamma amplitudes are coupled to theta phase in human EEG during visual perception. , 2007, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[7]  Daniel Lenz,et al.  What's that sound? Matches with auditory long-term memory induce gamma activity in human EEG. , 2007, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[8]  Werner Lutzenberger,et al.  Prefrontal gamma-band activity distinguishes between sound durations , 2007, Brain Research.

[9]  Simon Hanslmayr,et al.  Gamma oscillatory activity in a visual discrimination task , 2007, Brain Research Bulletin.

[10]  A. Engel,et al.  High-frequency activity in human visual cortex is modulated by visual motion strength. , 2007, Cerebral cortex.

[11]  Dave R. M. Langers,et al.  Representation of lateralization and tonotopy in primary versus secondary human auditory cortex , 2007, NeuroImage.

[12]  N. Weinberger Associative representational plasticity in the auditory cortex: a synthesis of two disciplines. , 2007, Learning & memory.

[13]  Matthias M. Müller,et al.  A cross-laboratory study of event-related gamma activity in a standard object recognition paradigm , 2006, NeuroImage.

[14]  M. Berger,et al.  High Gamma Power Is Phase-Locked to Theta Oscillations in Human Neocortex , 2006, Science.

[15]  Timm Rosburg,et al.  Sensory gating of auditory evoked and induced gamma band activity in intracranial recordings , 2006, NeuroImage.

[16]  José del R. Millán,et al.  Very high frequency oscillations (VHFO) as a predictor of movement intentions , 2006, NeuroImage.

[17]  Christoph S. Herrmann,et al.  Time-frequency analysis of target detection reveals an early interface between bottom-up and top-down processes in the gamma-band , 2006, NeuroImage.

[18]  M. Berger,et al.  High gamma activity in response to deviant auditory stimuli recorded directly from human cortex. , 2005, Journal of neurophysiology.

[19]  Henning Scheich,et al.  Learning-induced plasticity in animal and human auditory cortex , 2005, Current Opinion in Neurobiology.

[20]  Catherine Tallon-Baudry,et al.  The many faces of the gamma band response to complex visual stimuli , 2005, NeuroImage.

[21]  Maren Grigutsch,et al.  EEG oscillations and wavelet analysis , 2005 .

[22]  Todd C. Handy,et al.  Event-related potentials : a methods handbook , 2005 .

[23]  Werner Lutzenberger,et al.  Frontal gamma-band activity in magnetoencephalogram during auditory oddball processing , 2004, Neuroreport.

[24]  Matthias M. Müller,et al.  Induced gamma band responses: an early marker of memory encoding and retrieval , 2004, Neuroreport.

[25]  A. Engel,et al.  Cognitive functions of gamma-band activity: memory match and utilization , 2004, Trends in Cognitive Sciences.

[26]  Stefan Debener,et al.  Size matters: effects of stimulus size, duration and eccentricity on the visual gamma-band response , 2004, Clinical Neurophysiology.

[27]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[28]  N. Weinberger Specific long-term memory traces in primary auditory cortex , 2004, Nature Reviews Neuroscience.

[29]  William F Christensen,et al.  Silent Functional Magnetic Resonance Imaging (fMRI) of Tonotopicity and Stimulus Intensity Coding in Human Primary Auditory Cortex , 2004, The Laryngoscope.

[30]  Burkhard Maess,et al.  Memory-matches evoke human gamma-responses , 2004, BMC Neuroscience.

[31]  Werner Lutzenberger,et al.  Dynamics of gamma-band activity in human magnetoencephalogram during auditory pattern working memory , 2003, NeuroImage.

[32]  P. König,et al.  A Functional Gamma-Band Defined by Stimulus-Dependent Synchronization in Area 18 of Awake Behaving Cats , 2003, The Journal of Neuroscience.

[33]  Daniel Gembris,et al.  Top-down attentional processing enhances auditory evoked gamma band activity , 2003, Neuroreport.

[34]  D. Senkowski,et al.  Effects of task difficulty on evoked gamma activity and ERPs in a visual discrimination task , 2002, Clinical Neurophysiology.

[35]  A. Keil,et al.  Modulation of Induced Gamma Band Responses in a Perceptual Learning Task in the Human EEG , 2002, Journal of Cognitive Neuroscience.

[36]  Werner Lutzenberger,et al.  Dynamics of Gamma-Band Activity during an Audiospatial Working Memory Task in Humans , 2002, The Journal of Neuroscience.

[37]  H. Scheich,et al.  Stimulus-related gamma oscillations in primate auditory cortex. , 2002, Journal of neurophysiology.

[38]  W. Freeman,et al.  Change in pattern of ongoing cortical activity with auditory category learning , 2001, Nature.

[39]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[40]  Axel Mecklinger,et al.  Gamma activity in human EEG is related to highspeed memory comparisons during object selective attention , 2001 .

[41]  B. Gordon,et al.  Induced electrocorticographic gamma activity during auditory perception , 2001, Clinical Neurophysiology.

[42]  Human event-related potentials and distraction during selective listening , 2001, Neuroscience Letters.

[43]  W. Singer,et al.  Temporal binding and the neural correlates of sensory awareness , 2001, Trends in Cognitive Sciences.

[44]  M Schürmann,et al.  Topological distribution of oddball 'P300' responses. , 2001, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[45]  Holger Schulze,et al.  Spatial representation of frequency-modulated tones in gerbil auditory cortex revealed by epidural electrocorticography , 2000, Journal of Physiology-Paris.

[46]  Christo Pantev,et al.  The perception of coherent and non-coherent auditory objects: a signature in gamma frequency band , 2000, Hearing Research.

[47]  H Scheich,et al.  Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). III. Anatomical subdivisions and corticocortical connections , 2000, The European journal of neuroscience.

[48]  Matthias M. Müller,et al.  Human Gamma Band Activity and Perception of a Gestalt , 1999, The Journal of Neuroscience.

[49]  R. Eckhorn,et al.  Visual stimulation elicits locked and induced gamma oscillations in monkey intracortical- and EEG-potentials, but not in human EEG , 1999, Experimental Brain Research.

[50]  H Scheich,et al.  Bilateral ablation of auditory cortex in Mongolian gerbil affects discrimination of frequency modulated tones but not of pure tones. , 1999, Learning & memory.

[51]  W. Klimesch EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis , 1999, Brain Research Reviews.

[52]  O. Bertrand,et al.  Oscillatory gamma activity in humans and its role in object representation , 1999, Trends in Cognitive Sciences.

[53]  Charles L. Wilson,et al.  Hippocampal and Entorhinal Cortex High‐Frequency Oscillations (100–500 Hz) in Human Epileptic Brain and in Kainic Acid‐Treated Rats with Chronic Seizures , 1999, Epilepsia.

[54]  E. Basar,et al.  Are cognitive processes manifested in event-related gamma, alpha, theta and delta oscillations in the EEG? , 1999, Neuroscience Letters.

[55]  E Başar,et al.  Early gamma response is sensory in origin: a conclusion based on cross-comparison of results from multiple experimental paradigms. , 1998, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[56]  R. Lesser,et al.  Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. , 1998, Brain : a journal of neurology.

[57]  Catherine Tallon-Baudry,et al.  Induced γ-Band Activity during the Delay of a Visual Short-Term Memory Task in Humans , 1998, The Journal of Neuroscience.

[58]  Tamer Demiralp,et al.  The phase‐locking of auditory gamma band responses in humans is sensitive to task processing , 1997, Neuroreport.

[59]  E. Basar,et al.  Gamma-band responses in the brain: a short review of psychophysiological correlates and functional significance. , 1996, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[60]  J. Pernier,et al.  Stimulus Specificity of Phase-Locked and Non-Phase-Locked 40 Hz Visual Responses in Human , 1996, The Journal of Neuroscience.

[61]  T. Elbert,et al.  Visual stimulation alters local 40-Hz responses in humans: an EEG-study , 1995, Neuroscience Letters.

[62]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[63]  John O'Keefe,et al.  Hippocampus, theta, and spatial memory , 1993, Current Opinion in Neurobiology.

[64]  K. Reinikainen,et al.  Selective attention enhances the auditory 40-Hz transient response in humans , 1993, Nature.

[65]  K. Reinikainen,et al.  Event-related potentials to repetition and change of auditory stimuli. , 1992, Electroencephalography and clinical neurophysiology.

[66]  T. Bullock,et al.  Induced Rhythms in the Brain , 1992, Brain Dynamics.

[67]  F. Mauguière,et al.  Revisiting the oddball paradigm. Non-target vs neutral stimuli and the evaluation of ERP attentional effects , 1992, Neuropsychologia.

[68]  R. Fisher,et al.  High-frequency EEG activity at the start of seizures. , 1992, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[69]  Robert Galambos,et al.  A Comparison of Certain Gamma Band (40-HZ) Brain Rhythms in Cat and Man , 1992 .

[70]  S Makeig,et al.  Human auditory evoked gamma-band magnetic fields. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[71]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[72]  T. Picton,et al.  The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. , 1987, Psychophysiology.

[73]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[74]  J. Polich,et al.  Attention, probability, and task demands as determinants of P300 latency from auditory stimuli. , 1986, Electroencephalography and clinical neurophysiology.

[75]  T W Picton,et al.  N2 and automatic versus controlled processes. , 1986, Electroencephalography and clinical neurophysiology. Supplement.

[76]  J. Pickles An Introduction to the Physiology of Hearing , 1982 .

[77]  R. Näätänen,et al.  Magnitude of stimulus deviance and brain potentials. , 1980, Progress in brain research.

[78]  S. Hillyard,et al.  Electrical Signs of Selective Attention in the Human Brain , 1973, Science.

[79]  M. Rappaport,et al.  High frequency transients in EEG's of psychiatric patients and normal subjects. , 1968, Electroencephalography and clinical neurophysiology.

[80]  E. Shev Western electroencephalography society , 1967 .

[81]  E. Adrian Olfactory reactions in the brain of the hedgehog , 1942, The Journal of physiology.