Selective inhibitors of plasmepsin II of Plasmodium falciparum on the basis of pepstatin

[1]  Jun Liu,et al.  Hemoglobin-degrading Plasmepsin II Is Active as a Monomer* , 2006, Journal of Biological Chemistry.

[2]  L. Prade,et al.  X-ray Structure of Plasmepsin II Complexed with a Potent Achiral Inhibitor* , 2005, Journal of Biological Chemistry.

[3]  Jun Liu,et al.  Four plasmepsins are active in the Plasmodium falciparum food vacuole, including a protease with an active-site histidine , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[4]  D. Goldberg,et al.  Aspartic proteases of Plasmodium falciparum and other parasitic protozoa as drug targets. , 2001, Trends in parasitology.

[5]  I. Gluzman,et al.  Naturally‐occurring and recombinant forms of the aspartic proteinases plasmepsins I and II from the human malaria parasite Plasmodium f alciparum , 1999, FEBS letters.

[6]  D. Goldberg,et al.  Biosynthesis and Maturation of the Malaria Aspartic Hemoglobinases Plasmepsins I and II* , 1997, The Journal of Biological Chemistry.

[7]  B. Dunn,et al.  High level expression and characterisation of Plasmepsin II, an aspartic proteinase from Plasmodium falciparum , 1994, FEBS letters.

[8]  I. Gluzman,et al.  Order and specificity of the Plasmodium falciparum hemoglobin degradation pathway. , 1994, The Journal of clinical investigation.

[9]  R E Cachau,et al.  Crystal structures of native and inhibited forms of human cathepsin D: implications for lysosomal targeting and drug design. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[10]  I. Gluzman,et al.  Molecular characterization and inhibition of a Plasmodium falciparum aspartic hemoglobinase. , 1994, The EMBO journal.

[11]  B. Chait,et al.  Hemoglobin degradation in the human malaria pathogen Plasmodium falciparum: a catabolic pathway initiated by a specific aspartic protease , 1991, The Journal of experimental medicine.

[12]  D. Goldberg,et al.  Hemoglobin degradation in the malaria parasite Plasmodium falciparum: an ordered process in a unique organelle. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Marvin J Miller,et al.  Mycobactins: synthesis of (-)-cobactin T from .epsilon.-hydroxynorleucine , 1981 .

[14]  V. Mutt,et al.  Cholecystokinin (pancreozymin). 4. Synthesis and properties of a biologically active analogue of the C-terminal heptapeptide with epsilon-hydroxynorleucine sulfate replacing tyrosine sulfate. , 1978, Journal of medicinal chemistry.

[15]  B. Gisin The Preparation of Merrifield‐Resins Through Total Esterification With Cesium Salts , 1973 .

[16]  P. Henderson,et al.  A linear equation that describes the steady-state kinetics of enzymes and subcellular particles interacting with tightly bound inhibitors. , 1972, The Biochemical journal.

[17]  L. S. Harrow Organic Syntheses, Collective , 1955 .

[18]  Howard L. Saft,et al.  Active site specificity of plasmepsin II , 1999, Protein science : a publication of the Protein Society.

[19]  B. Dunn,et al.  Plasmepsins I and II from the malarial parasite Plasmodium falciparum. , 1998, Advances in experimental medicine and biology.

[20]  D. Goldberg Hemoglobin degradation in the malaria parasite : an ordered process in a unique organelle , 1990 .

[21]  J. Baldwin,et al.  Synthesis of n-benzyloxycarbonyl-l-α-aminoadipic acid, α-benzyl ester , 1988 .

[22]  D. Grobelny A new method of synthesis of -haloethylbenzyl ethers , 1979 .