Measuring the rotation rates of superpositions of higher-order Bessel beams

Experimental measurements are reported of the rotation rates of superpositions of higher-order Bessel beams. Digitally generated phase masks of two annular rings, were imprinted on a spatial light modulator and used to obtain superpositions of higher-order Bessel beams of the same order but of opposite topological charge. Such a superposition field carries on average zero orbital angular momentum, yet exhibits a rotation in the intensity pattern: the resultant field rotates at a constant rate about the optical axis as it propagates. The rotation rates of the generated fields were measured for different orders and for various values of the difference between the wave-vectors of the superimposing beams, and are shown to be in good agreement with that predicted theoretically.

[1]  J. Mcleod The Axicon: A New Type of Optical Element , 1954 .

[2]  Zhigang Chen,et al.  Generation and nonlinear self-trapping of optical propelling beams. , 2010, Optics letters.

[3]  T. A. Wiggins,et al.  Production and uses of diffractionless beams , 1991 .

[4]  W. Dou,et al.  VECTOR ANALYSES OF NONDIFFRACTING BESSEL BEAMS , 2008 .

[5]  K. Dholakia,et al.  Optical micromanipulation using a Bessel light beam , 2001 .

[6]  Sabino Chávez-Cerda,et al.  Nondiffracting beams: travelling, standing, rotating and spiral waves , 1996 .

[7]  Neil McArdle,et al.  Efficient generation of nearly diffraction-free beams using an axicon , 1992 .

[8]  Carlos López-Mariscal,et al.  Production of high-order Bessel beams with a Mach-Zehnder interferometer. , 2004, Applied optics.

[9]  Ruslan Vasilyeu,et al.  Generating superpositions of higher-order Bessel beams. , 2009, Optics express.

[10]  J Turunen,et al.  Realization of general nondiffracting beams with computer-generated holograms. , 1989, Journal of the Optical Society of America. A, Optics and image science.

[11]  Vladimir G. Volostnikov,et al.  Spiral-type beams , 1993 .

[12]  C. Paterson,et al.  Higher-order Bessel waves produced by axicon-type computer-generated holograms , 1996 .

[13]  Kristian Helmerson,et al.  Shaped nondiffracting beams. , 2010, Optics letters.

[14]  Victor A. Soifer,et al.  Generation of rotating gauss—Laguerre modes with binary-phase diffractive optics , 1999 .

[15]  Victor A. Soifer,et al.  Rotation of laser beams with zero of the orbital angular momentum , 2007 .

[16]  M J Padgett,et al.  Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle. , 2003, Physical review letters.

[17]  Vladimir G. Volostnikov,et al.  Generation of spiral-type laser beams , 1997 .

[18]  S. Hacyan,et al.  A relativistic study of Bessel beams , 2006, physics/0601048.

[19]  T. Alieva,et al.  Rotating beams in isotropic optical system. , 2010, Optics express.

[20]  Vladimir G. Volostnikov,et al.  Spiral-type beams: optical and quantum aspects , 1996 .

[21]  Victor A. Soifer,et al.  Rotating optical fields: experimental demonstration with diffractive optics , 1998 .

[22]  D M Cottrell,et al.  Nondiffracting interference patterns generated with programmable spatial light modulators. , 1996, Applied optics.

[23]  Generation of spiraling high-order Bessel beams , 2011 .

[24]  K. Dholakia,et al.  Orbital angular momentum of a high-order Bessel light beam , 2002 .

[25]  J. Turunen,et al.  Rotating scale-invariant electromagnetic fields. , 2001, Optics express.

[26]  J. Durnin Exact solutions for nondiffracting beams. I. The scalar theory , 1987 .

[27]  Jochen Arlt,et al.  Handedness and azimuthal energy flow of optical vortex beams , 2003 .

[28]  He,et al.  Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. , 1995, Physical review letters.

[29]  Carl Paterson,et al.  Helicon waves: propagation-invariant waves in a rotating coordinate system , 1996 .

[30]  Paolo Di Trapani,et al.  Spiraling zero-order Bessel beam. , 2009, Optics letters.

[31]  Vygandas Jarutis,et al.  Generation and control of the spiraling zero-order Bessel beam. , 2010, Optics express.

[32]  Kishan Dholakia,et al.  Three-dimensional optical forces and transfer of orbital angular momentum from multiringed light beams to spherical microparticles , 2004 .

[33]  J. Glückstad,et al.  Optical twists in phase and amplitude. , 2011, Optics express.

[34]  Miceli,et al.  Diffraction-free beams. , 1987, Physical review letters.

[35]  K. Dholakia,et al.  Bessel beams: Diffraction in a new light , 2005 .

[36]  Kishan Dholakia,et al.  Transfer of orbital angular momentum to an optically trapped low-index particle , 2002 .

[37]  Kishan Dholakia,et al.  Generation of high-order Bessel beams by use of an axicon , 2000 .

[38]  D. W. K. Wong,et al.  Redistribution of the zero order by the use of a phase checkerboard pattern in computer generated holograms. , 2008, Applied optics.

[39]  Shamir,et al.  Wave propagation with rotating intensity distributions. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[40]  D M Cottrell,et al.  Diffraction-free beams generated with programmable spatial light modulators. , 1993, Applied optics.

[41]  William B. McKnight,et al.  From Maxwell to paraxial wave optics , 1975 .

[42]  Conversion of high-order Laguerre–Gaussian beams into Bessel beams of increased, reduced or zeroth order by use of a helical axicon , 2009 .

[43]  D. Petrov,et al.  Optical Pumping of Orbital Angular Momentum of Light in Cold Cesium Atoms , 1999 .