Comparison and improvements of LCMV and MUSIC source localization techniques for use in real clinical environments

The present work shows some improvements realized on practical aspects of the implementation of Singular Value Decomposition (SVD) methods to localize the sources of neural activity by means of magnetoencephalograph (MEG). Two methods have been improved and compared i.e. a spatial filter, the Linearly Constrained Minimum Variance Beamformer (LCMV) method, and a signal subspace method that is an implementation of the MUSIC (Multiple Signal Classification) method due to Mosher et al. (1992). It also shows the performance of both methods comparing three different averaging procedures. The influence of the correct selection of the noise subspace dimension has been analyzed. Using acoustic stimulus for real patient measurements, we discuss the relevant differences of both methods and propose an adequate strategy for future diagnosis based on correct source localization.

[1]  Jyrki P. Mäkelä,et al.  Effects of subthalamic nucleus stimulation on spontaneous sensorimotor MEG activity in a Parkinsonian patient , 2007 .

[2]  Matthew J. Brookes,et al.  Optimising experimental design for MEG beamformer imaging , 2008, NeuroImage.

[3]  C. Burrus,et al.  Array Signal Processing , 1989 .

[4]  Richard M. Leahy,et al.  Source localization using recursively applied and projected (RAP) MUSIC , 1997, Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136).

[5]  Hesheng Liu,et al.  Efficient localization of synchronous EEG source activities using a modified RAP-MUSIC algorithm , 2006, IEEE Transactions on Biomedical Engineering.

[6]  David Poeppel,et al.  Performance of an MEG adaptive-beamformer source reconstruction technique in the presence of additive low-rank interference , 2004, IEEE Transactions on Biomedical Engineering.

[7]  W. Drongelen,et al.  Localization of brain electrical activity via linearly constrained minimum variance spatial filtering , 1997, IEEE Transactions on Biomedical Engineering.

[8]  K. Sekihara,et al.  Noise covariance incorporated MEG-MUSIC algorithm: a method for multiple-dipole estimation tolerant of the influence of background brain activity , 1997, IEEE Transactions on Biomedical Engineering.

[9]  J. Vrba,et al.  Signal processing in magnetoencephalography. , 2001, Methods.

[10]  B. Katyal,et al.  Multiple current dipole estimation in a realistic head model using R-MUSIC , 2004, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[11]  Robert Oostenveld,et al.  FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data , 2010, Comput. Intell. Neurosci..

[12]  J.C. Mosher,et al.  Recursive MUSIC: A framework for EEG and MEG source localization , 1998, IEEE Transactions on Biomedical Engineering.

[13]  M. Hallett,et al.  An improved method for localizing electric brain dipoles , 1990, IEEE Transactions on Biomedical Engineering.

[14]  J. Sarvas Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. , 1987, Physics in medicine and biology.

[15]  Dietrich Lehmann,et al.  Evaluation of Methods for Three-Dimensional Localization of Electrical Sources in the Human Brain , 1978, IEEE Transactions on Biomedical Engineering.

[16]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[17]  R. Leahy,et al.  Multiple Dipole Modeling and Localization from , 1992 .

[18]  Riaz A Khan,et al.  SOURCE LOCALIZATION OF BRAIN ELECTRICAL ACTIVITY VIA TIME-FREQUENCY LINEARLY CONSTRAINED MINIMUM VARIANCE METHOD , 2005 .