ADEPT: a domain independent sequence alignment strategy for gpu architectures

[1]  Ariful Azad,et al.  Distributed Many-to-Many Protein Sequence Alignment using Sparse Matrices , 2020, SC20: International Conference for High Performance Computing, Networking, Storage and Analysis.

[2]  H. Begum,et al.  Nitrogen-rich graphitic-carbon@graphene as a metal-free electrocatalyst for oxygen reduction reaction , 2020, Scientific Reports.

[3]  Katherine Yelick,et al.  Terabase-scale metagenome coassembly with MetaHipMer , 2020, Scientific Reports.

[4]  Zaid Al-Ars,et al.  GASAL2: a GPU accelerated sequence alignment library for high-throughput NGS data , 2019, BMC Bioinformatics.

[5]  K. Yelick,et al.  diBELLA , 2019, Proceedings of the 48th International Conference on Parallel Processing.

[6]  Knut Reinert,et al.  Generic accelerated sequence alignment in SeqAn using vectorization and multi‐threading , 2018, Bioinform..

[7]  Fahad Saeed,et al.  GPU-DAEMON: GPU algorithm design, data management & optimization template for array based big omics data , 2018, Comput. Biol. Medicine.

[8]  Leonid Oliker,et al.  Extreme Scale De Novo Metagenome Assembly , 2018, SC18: International Conference for High Performance Computing, Networking, Storage and Analysis.

[9]  Douglas Doerfler,et al.  Evaluating the networking characteristics of the Cray XC‐40 Intel Knights Landing‐based Cori supercomputer at NERSC , 2018, Concurr. Comput. Pract. Exp..

[10]  Georgios A. Pavlopoulos,et al.  HipMCL: a high-performance parallel implementation of the Markov clustering algorithm for large-scale networks , 2018, Nucleic acids research.

[11]  Knut Reinert,et al.  The SeqAn C++ template library for efficient sequence analysis: A resource for programmers. , 2017, Journal of biotechnology.

[12]  Johannes Söding,et al.  MMseqs2: sensitive protein sequence searching for the analysis of massive data sets , 2017, bioRxiv.

[13]  Leonid Oliker,et al.  HipMer: an extreme-scale de novo genome assembler , 2015, SC15: International Conference for High Performance Computing, Networking, Storage and Analysis.

[14]  Leonid Oliker,et al.  merAligner: A Fully Parallel Sequence Aligner , 2015, 2015 IEEE International Parallel and Distributed Processing Symposium.

[15]  Chao Xie,et al.  Fast and sensitive protein alignment using DIAMOND , 2014, Nature Methods.

[16]  Eduard Ayguadé,et al.  CUDAlign 3.0: Parallel Biological Sequence Comparison in Large GPU Clusters , 2014, 2014 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing.

[17]  Steven E. Brenner,et al.  SCOPe: Structural Classification of Proteins—extended, integrating SCOP and ASTRAL data and classification of new structures , 2013, Nucleic Acids Res..

[18]  William R Pearson,et al.  Selecting the Right Similarity‐Scoring Matrix , 2013, Current protocols in bioinformatics.

[19]  C. Quince,et al.  Comparative metagenomic and rRNA microbial diversity characterization using archaeal and bacterial synthetic communities. , 2013, Environmental microbiology.

[20]  Heng Li Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM , 2013, 1303.3997.

[21]  Gabor T. Marth,et al.  SSW Library: An SIMD Smith-Waterman C/C++ Library for Use in Genomic Applications , 2012, PloS one.

[22]  Yongchao Liu,et al.  CUDASW++ 3.0: accelerating Smith-Waterman protein database search by coupling CPU and GPU SIMD instructions , 2013, BMC Bioinformatics.

[23]  Alessandra Cambi,et al.  The Tetraspanin CD37 Orchestrates the α4β1 Integrin–Akt Signaling Axis and Supports Long-Lived Plasma Cell Survival , 2012, Science Signaling.

[24]  Alan M. Moses,et al.  Proteome-Wide Discovery of Evolutionary Conserved Sequences in Disordered Regions , 2012, Science Signaling.

[25]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[26]  Torbjørn Rognes,et al.  Faster Smith-Waterman database searches with inter-sequence SIMD parallelisation , 2011, BMC Bioinformatics.

[27]  Dorothea Emig,et al.  Partitioning biological data with transitivity clustering , 2010, Nature Methods.

[28]  Fang Zhou,et al.  QTL mapping arthritis traits in CXB mice , 2008, BMC Bioinformatics.

[29]  Giorgio Valle,et al.  CUDA compatible GPU cards as efficient hardware accelerators for Smith-Waterman sequence alignment , 2008, BMC Bioinformatics.

[30]  Melissa Bastide,et al.  Assembling Genomic DNA Sequences with PHRAP , 2007, Current protocols in bioinformatics.

[31]  Michael Farrar,et al.  Sequence analysis Striped Smith – Waterman speeds database searches six times over other SIMD implementations , 2007 .

[32]  Anton J. Enright,et al.  An efficient algorithm for large-scale detection of protein families. , 2002, Nucleic acids research.

[33]  Torbjørn Rognes,et al.  Six-fold speed-up of Smith-Waterman sequence database searches using parallel processing on common microprocessors , 2000, Bioinform..

[34]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[35]  Andrzej Wozniak,et al.  Using video-oriented instructions to speed up sequence comparison , 1997, Comput. Appl. Biosci..

[36]  O. Gotoh An improved algorithm for matching biological sequences. , 1982, Journal of molecular biology.

[37]  M S Waterman,et al.  Identification of common molecular subsequences. , 1981, Journal of molecular biology.

[38]  Megan Sorenson,et al.  Library , 1958 .