On-surface azide-alkyne cycloaddition on Cu(111): does it "click" in ultrahigh vacuum?

Using scanning tunneling microscopy, we demonstrate that the 1,3-dipolar cycloaddition between a terminal alkyne and an azide can be performed under solvent-free ultrahigh vacuum conditions with reactants adsorbed on a Cu(111) surface. XPS shows significant degradation of the azide upon adsorption, which is found to be the limiting factor for the reaction.

[1]  F. Dumur,et al.  Sequential Linking To Control Growth of a Surface Covalent Organic Framework , 2012 .

[2]  J. Martín-Gago,et al.  On-surface synthesis of cyclic organic molecules. , 2011, Chemical Society reviews.

[3]  A. Gourdon,et al.  Covalent networks through on-surface chemistry in ultra-high vacuum: state-of-the-art and recent developments. , 2011, Physical chemistry chemical physics : PCCP.

[4]  F. Diederich,et al.  Visualizing the product of a formal cycloaddition of 7,7,8,8-tetracyano-p-quinodimethane (TCNQ) to an acetylene-appended porphyrin by scanning tunneling microscopy on Au(111). , 2011, Chemistry.

[5]  K. Gaus,et al.  Different functionalization of the internal and external surfaces in mesoporous materials for biosensing applications using "click" chemistry. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[6]  M. Jimenez,et al.  A "clickable" titanium surface platform. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[7]  A. Seitsonen,et al.  Atomically precise bottom-up fabrication of graphene nanoribbons , 2010, Nature.

[8]  Wael Mamdouh,et al.  Single-molecule chemical reactions on DNA origami. , 2010, Nature nanotechnology.

[9]  S. De Feyter,et al.  Molecular and supramolecular networks on surfaces: from two-dimensional crystal engineering to reactivity. , 2009, Angewandte Chemie.

[10]  W. Heckl,et al.  Surface mediated synthesis of 2D covalent organic frameworks: 1,3,5-tris(4-bromophenyl)benzene on graphite(001), Cu(111), and Ag(110). , 2009, Chemical communications.

[11]  R. Boukherroub,et al.  Clicking ferrocene groups to boron-doped diamond electrodes. , 2009, Chemical communications.

[12]  J. F. Stoddart,et al.  Heterogeneous catalysis of a copper-coated atomic force microscopy tip for direct-write click chemistry. , 2009, Journal of the American Chemical Society.

[13]  P. Scrimin,et al.  Covalent capture: merging covalent and noncovalent synthesis. , 2009, Angewandte Chemie.

[14]  J. White,et al.  Adsorption and Oxidation of Phenylacetylene and Phenylmethylacetylene on Oxygen-Precovered Cu(111) : Effects of Terminal Hydrogen and Atomic Oxygen Coverage , 2008 .

[15]  A. Gourdon,et al.  On-surface covalent coupling in ultrahigh vacuum. , 2008, Angewandte Chemie.

[16]  Kurt V Gothelf,et al.  Surface synthesis of 2D branched polymer nanostructures. , 2008, Angewandte Chemie.

[17]  Didier Gigmes,et al.  Organized formation of 2D extended covalent organic frameworks at surfaces. , 2008, Journal of the American Chemical Society.

[18]  B. Hammer,et al.  Covalent interlinking of an aldehyde and an amine on a Au(111) surface in ultrahigh vacuum. , 2007, Angewandte Chemie.

[19]  M. Persson,et al.  Nano-architectures by covalent assembly of molecular building blocks. , 2007, Nature nanotechnology.

[20]  Kristopher A Kilian,et al.  Functionalization of acetylene-terminated monolayers on Si(100) surfaces: a click chemistry approach. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[21]  J. Moses,et al.  The growing applications of click chemistry. , 2007, Chemical Society reviews.

[22]  J. Barth,et al.  Molecular architectonic on metal surfaces. , 2007, Annual review of physical chemistry.

[23]  W. Binder,et al.  ‘Click’ Chemistry in Polymer and Materials Science , 2007 .

[24]  Neal K Devaraj,et al.  Mixed azide-terminated monolayers: a platform for modifying electrode surfaces. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[25]  F. Himo,et al.  Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. , 2004, Journal of the American Chemical Society.

[26]  A. Goldoni,et al.  XPS, NEXAFS and theoretical study of phenylacetylene adsorbed on Cu (100) , 2004 .

[27]  H. Kolb,et al.  The growing impact of click chemistry on drug discovery. , 2003, Drug discovery today.

[28]  Luke G Green,et al.  A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. , 2002, Angewandte Chemie.

[29]  Morten Meldal,et al.  Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. , 2002, The Journal of organic chemistry.

[30]  H. Kolb,et al.  Click Chemistry: Diverse Chemical Function from a Few Good Reactions. , 2001, Angewandte Chemie.

[31]  T. Kammler,et al.  Interaction of H atoms with Cu(111) surfaces: Adsorption, absorption, and abstraction , 1999 .

[32]  R. Car,et al.  Two-Dimensional Self-Assembly of Supramolecular Clusters and Chains , 1999 .