The genome sequence of Schizosaccharomyces pombe

We have sequenced and annotated the genome of fission yeast (Schizosaccharomyces pombe), which contains the smallest number of protein-coding genes yet recorded for a eukaryote: 4,824. The centromeres are between 35 and 110 kilobases (kb) and contain related repeats including a highly conserved 1.8-kb element. Regions upstream of genes are longer than in budding yeast (Saccharomyces cerevisiae), possibly reflecting more-extended control regions. Some 43% of the genes contain introns, of which there are 4,730. Fifty genes have significant similarity with human disease genes; half of these are cancer related. We identify highly conserved genes important for eukaryotic cell organization including those required for the cytoskeleton, compartmentation, cell-cycle control, proteolysis, protein phosphorylation and RNA splicing. These genes may have originated with the appearance of eukaryotic life. Few similarly conserved genes that are important for multicellular organization were identified, suggesting that the transition from prokaryotes to eukaryotes required more new genes than did the transition from unicellular to multicellular organization.

B. Barrell | A. Goffeau | B. Purnelle | G. Volckaert | J. Sgouros | S. Hunt | D. Ussery | A. Fraser | R. Gwilliam | M. Quail | F. Galibert | G. Hodgson | G. V. Shpakovski | K. James | Ruth Taylor | T. Lowe | J. Revuelta | H. Lehrach | R. Wambutt | W. Zimmermann | V. Wood | K. Mungall | M. Jones | R. Reinhardt | W. McCombie | S. Bowman | I. Paulsen | Kim M Rutherford | M. Rajandream | M. Lyne | R. Lyne | A. Stewart | N. Peat | J. Hayles | S. Baker | D. Basham | K. Brooks | D. Brown | S. Brown | T. Chillingworth | C. Churcher | M. Collins | R. Connor | A. Cronin | P. Davis | T. Feltwell | A. Fraser | S. Gentles | A. Goble | N. Hamlin | D. Harris | J. Hidalgo | S. Holroyd | T. Hornsby | S. Howarth | E. Huckle | K. Jagels | L. Jones | S. Leather | S. Mcdonald | J. Mclean | P. Mooney | S. Moule | L. Murphy | D. Niblett | C. Odell | K. Oliver | S. O'neil | D. Pearson | E. Rabbinowitsch | K. Rutherford | S. Rutter | D. Saunders | K. Seeger | S. Sharp | J. Skelton | M. Simmonds | R. Squares | S. Squares | K. Stevens | K. Taylor | R. Taylor | A. Tivey | S. Walsh | T. Warren | S. Whitehead | J. Woodward | R. Aert | J. Robben | B. Grymonprez | I. Weltjens | E. Vanstreels | M. Rieger | M. Schäfer | S. Müller-Auer | C. Gabel | M. Fuchs | C. Fritzc | E. Holzer | D. Moestl | H. Hilbert | K. Borzym | I. Langer | A. Beck | T. Pohl | P. Eger | H. Wedler | É. Cadieu | S. Dréano | S. Gloux | V. Lelaure | S. Mottier | S. Aves | Z. Xiang | C. Hunt | K. Moore | S. M. Hurst | M. Lucas | M. Rochet | C. Gaillardin | V. A. Tallada | A. Garzón | G. Thode | R. Daga | L. Cruzado | J. Jiménez | M. Sánchez | F. Rey | J. Benito | A. Dominguez | S. Moreno | J. Armstrong | S. Forsburg | L. Cerrutti | J. Potashkin | P. Nurse | S. Müller-Auer | C. Gaillardin | M. Sánchez | M. Jones | M. Schafer | M. Schäfer | M. Jones | M. Jones | David M. Brown | Lisa Jones | Michael P. Jones | S. Muller-Auer | K. Taylor | A. Domínguez | L. Jones

[1]  J. Mitchison,et al.  The growth of single cells. I. Schizosaccharomyces pombe. , 1957, Experimental cell research.

[2]  C. Kurland,et al.  Nucleoside triphosphate regeneration decreases the frequency of translation errors. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[3]  J. Mao,et al.  The 5S RNA genes of Schizosaccharomyces pombe. , 1982, Nucleic acids research.

[4]  D. Söll,et al.  Arrangement of the ribosomal RNA genes in Schizosaccharomyces pombe , 1982, FEBS letters.

[5]  Dieter Söll,et al.  The 5.8S RNA gene sequence and the ribosomal repeat of Schizosaccharomyces pombe. , 1982, Nucleic acids research.

[6]  G. Fink,et al.  The relationship between the "TATA" sequence and transcription initiation sites at the HIS4 gene of Saccharomyces cerevisiae. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Ronald W. Davis,et al.  Functional selection and analysis of yeast centromeric DNA , 1985, Cell.

[8]  P. Russell,et al.  Transcription of the triose-phosphate-isomerase gene of Schizosaccharomyces pombe initiates from a start point different from that in Saccharomyces cerevisiae. , 1985, Gene.

[9]  M. Heel,et al.  Exact filters for general geometry three dimensional reconstruction , 1986 .

[10]  D. Mccormick Sequence the Human Genome , 1986, Bio/Technology.

[11]  O. Niwa,et al.  Chromosome walking shows a highly homologous repetitive sequence present in all the centromere regions of fission yeast , 1986, The EMBO journal.

[12]  R. Cedergren,et al.  The mitochondrial genome of the fission yeast, Schizosaccharomyces pombe. Sequence of the large-subunit ribosomal RNA gene, comparison of potential secondary structure in fungal mitochondrial large-subunit rRNAs and evolutionary considerations. , 1987, European journal of biochemistry.

[13]  G. Fink,et al.  Pseudogenes in yeast? , 1987, Cell.

[14]  C. Cantor,et al.  An electrophoretic karyotype for Schizosaccharomyces pombe by pulsed field gel electrophoresis. , 1987, Nucleic acids research.

[15]  Tom Maniatis,et al.  The role of small nuclear ribonucleoprotein particles in pre-mRNA splicing , 1987, Nature.

[16]  M. Baum,et al.  Structural organization and functional analysis of centromeric DNA in the fission yeast Schizosaccharomyces pombe , 1988, Molecular and cellular biology.

[17]  D. Lipman,et al.  Improved tools for biological sequence comparison. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Tomohiro Matsumoto,et al.  Composite motifs and repeat symmetry in S. pombe centromeres: Direct analysis by integration of Notl restriction sites , 1989, Cell.

[19]  M. Baum,et al.  Functional analysis of a centromere from fission yeast: a role for centromere-specific repeated DNA sequences , 1990, Molecular and cellular biology.

[20]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[21]  Functional analysis of a centromere from fission yeast: a role for centromere-specific repeated DNA sequences , 1990 .

[22]  W. Tate,et al.  Localization of the release factor-2 binding site on 70 S ribosomes by immuno-electron microscopy. , 1990, Journal of molecular biology.

[23]  O. Niwa,et al.  A large number of tRNA genes are symmetrically located in fission yeast centromeres. , 1991, Journal of molecular biology.

[24]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[25]  T. Marr,et al.  A 13 kb resolution cosmid map of the 14 Mb fission yeast genome by nonrandom sequence-tagged site mapping , 1993, Cell.

[26]  S V Evans,et al.  SETOR: hardware-lighted three-dimensional solid model representations of macromolecules. , 1993, Journal of molecular graphics.

[27]  Hans Lehrach,et al.  High resolution cosmid and P1 maps spanning the 14 Mb genome of the fission yeast S. pombe , 1993, Cell.

[28]  M. Baum,et al.  The centromeric K-type repeat and the central core are together sufficient to establish a functional Schizosaccharomyces pombe centromere. , 1994, Molecular biology of the cell.

[29]  W. Tate,et al.  A single proteolytic cleavage in release factor 2 stabilizes ribosome binding and abolishes peptidyl-tRNA hydrolysis activity. , 1994, The Journal of biological chemistry.

[30]  Erik L. L. Sonnhammer,et al.  A workbench for large-scale sequence homology analysis , 1994, Comput. Appl. Biosci..

[31]  A. Hyman,et al.  Structure and function of kinetochores in budding yeast. , 1995, Annual review of cell and developmental biology.

[32]  J. Bonfield,et al.  A new DNA sequence assembly program. , 1995, Nucleic acids research.

[33]  W. Kabsch,et al.  The actin fold , 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[34]  S Thirup,et al.  Crystal Structure of the Ternary Complex of Phe-tRNAPhe, EF-Tu, and a GTP Analog , 1995, Science.

[35]  B. Barrell,et al.  Life with 6000 Genes , 1996, Science.

[36]  J. Lobry Asymmetric substitution patterns in the two DNA strands of bacteria. , 1996, Molecular biology and evolution.

[37]  P. Nurse,et al.  A single fission yeast mitotic cyclin B p34cdc2 kinase promotes both S‐phase and mitosis in the absence of G1 cyclins. , 1996, The EMBO journal.

[38]  Y. Nakamura,et al.  Conserved motifs in prokaryotic and eukaryotic polypeptide release factors: tRNA-protein mimicry hypothesis. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[39]  T J Gibson,et al.  PairWise and SearchWise: finding the optimal alignment in a simultaneous comparison of a protein profile against all DNA translation frames. , 1996, Nucleic acids research.

[40]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[41]  André Goffeau,et al.  The yeast genome directory. , 1997, Nature.

[42]  K. H. Wolfe,et al.  Molecular evidence for an ancient duplication of the entire yeast genome , 1997, Nature.

[43]  M. Ehrenberg,et al.  Release factor RF3 in E.coli accelerates the dissociation of release factors RF1 and RF2 from the ribosome in a GTP‐dependent manner , 1997, The EMBO journal.

[44]  Rolf Apweiler,et al.  The SWISS-PROT protein sequence data bank and its supplement TrEMBL , 1997, Nucleic Acids Res..

[45]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[46]  J. Berg Genome sequence of the nematode C. elegans: a platform for investigating biology. , 1998, Science.

[47]  Andrew Smith Genome sequence of the nematode C-elegans: A platform for investigating biology , 1998 .

[48]  R. Huber,et al.  The complete genome of the hyperthermophilic bacterium Aquifex aeolicus , 1998, Nature.

[49]  cDNA Catalog of Fission Yeast (Schizosaccharomyces pombe) and Its Application for Cloning of Mammalian DNA Repair Gene , 1998 .

[50]  Temple F. Smith,et al.  Comparison of the complete protein sets of worm and yeast: orthology and divergence. , 1998, Science.

[51]  David Botstein,et al.  SGD: Saccharomyces Genome Database , 1998, Nucleic Acids Res..

[52]  D. Voytas,et al.  Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. , 1998, Genome research.

[53]  Biodefence mechanisms against environmental stress , 1998 .

[54]  H. Erickson,et al.  Atomic structures of tubulin and FtsZ. , 1998, Trends in cell biology.

[55]  L. Lundin,et al.  Gene duplications in early metazoan evolution. , 1999, Seminars in cell & developmental biology.

[56]  Robert D. Finn,et al.  Pfam 3.1: 1313 multiple alignments and profile HMMs match the majority of proteins , 1999, Nucleic Acids Res..

[57]  A. Bairoch,et al.  The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1999 , 1999, Nucleic Acids Res..

[58]  Dmitrij Frishman,et al.  MIPS: a database for genomes and protein sequences , 1999, Nucleic Acids Res..

[59]  R George,et al.  An exploration of the sequence of a 2.9-Mb region of the genome of Drosophila melanogaster: the Adh region. , 1999, Genetics.

[60]  P. Russell,et al.  Nuclear localization of Cdc25 is regulated by DNA damage and a 14-3-3 protein , 1999, Nature.

[61]  H. Mori,et al.  Phylogenetic analysis of the third hsp70 homolog in Escherichia coli; a novel member of the Hsc66 subfamily and its possible co-chaperone. , 1999, DNA research : an international journal for rapid publication of reports on genes and genomes.

[62]  R. Gwilliam,et al.  The complete nucleotide sequence of chromosome 3 of Plasmodium falciparum , 1999, Nature.

[63]  O. White,et al.  Global transposon mutagenesis and a minimal Mycoplasma genome. , 1999, Science.

[64]  T. Merkulova,et al.  C‐terminal domains of human translation termination factors eRF1 and eRF3 mediate their in vivo interaction , 1999, FEBS letters.

[65]  J. McCutcheon,et al.  A Detailed View of a Ribosomal Active Site The Structure of the L11–RNA Complex , 1999, Cell.

[66]  F. Antequera,et al.  Organization of DNA replication origins in the fission yeast genome , 1999, The EMBO journal.

[67]  E. Lattman,et al.  Crystal structure of a conserved ribosomal protein-RNA complex. , 1999, Science.

[68]  I. Stansfield,et al.  Terminating eukaryote translation: domain 1 of release factor eRF1 functions in stop codon recognition. , 2000, RNA.

[69]  D. Barford,et al.  The Crystal Structure of Human Eukaryotic Release Factor eRF1—Mechanism of Stop Codon Recognition and Peptidyl-tRNA Hydrolysis , 2000, Cell.

[70]  The Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana , 2000, Nature.

[71]  Y. Nakamura,et al.  Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti (supplement). , 2000, DNA research : an international journal for rapid publication of reports on genes and genomes.

[72]  Stephen M. Mount,et al.  The genome sequence of Drosophila melanogaster. , 2000, Science.

[73]  The yeast nucleus , 2000 .

[74]  R. Allshire,et al.  Distinct protein interaction domains and protein spreading in a complex centromere. , 2000, Genes & development.

[75]  Kim Rutherford,et al.  Artemis: sequence visualization and annotation , 2000, Bioinform..

[76]  Matthias Sipiczki,et al.  Where does fission yeast sit on the tree of life? , 2000, Genome Biology.

[77]  Rolf Apweiler,et al.  The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000 , 2000, Nucleic Acids Res..

[78]  Michael E. Cusick,et al.  The Yeast Proteome Database (YPD) and Caenorhabditis elegans Proteome Database (WormPD): comprehensive resources for the organization and comparison of model organism protein information , 2000, Nucleic Acids Res..

[79]  B. Dujon,et al.  Genomic Exploration of the Hemiascomycetous Yeasts: 4. The genome of Saccharomyces cerevisiae revisited , 2000, FEBS letters.

[80]  M. Heel,et al.  Single-particle electron cryo-microscopy: towards atomic resolution , 2000, Quarterly Reviews of Biophysics.

[81]  H. Noller,et al.  Functional sites of interaction between release factor RF1 and the ribosome , 2000, Nature Structural Biology.

[82]  Evelyn Camon,et al.  The EMBL Nucleotide Sequence Database , 2000, Nucleic Acids Res..

[83]  A. Nekrutenko,et al.  Densities, length proportions, and other distributional features of repetitive sequences in the human genome estimated from 430 megabases of genomic sequence. , 2000, Gene.

[84]  T. Humphrey,et al.  DNA damage and cell cycle control in Schizosaccharomyces pombe. , 2000, Mutation research.

[85]  H. Robertson,et al.  The large srh family of chemoreceptor genes in Caenorhabditis nematodes reveals processes of genome evolution involving large duplications and deletions and intron gains and losses. , 2000, Genome research.

[86]  K. Watanabe,et al.  Proteolytic fragmentation of polypeptide release factor 1 of Thermus thermophilus and crystallization of the stable fragments. , 2000, Biochimie.

[87]  Y. Nakamura,et al.  Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. , 2000, DNA research : an international journal for rapid publication of reports on genes and genomes.

[88]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[89]  Gerald R. Smith,et al.  Meiotic recombination and chromosome segregation in Schizosaccharomyces pombe , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[90]  B. Graveley Alternative splicing: increasing diversity in the proteomic world. , 2001, Trends in genetics : TIG.

[91]  B. Barrell,et al.  A Re-Annotation of the Saccharomyces Cerevisiae Genome , 2001, Comparative and functional genomics.

[92]  B. Vestergaard,et al.  Bacterial polypeptide release factor RF2 is structurally distinct from eukaryotic eRF1. , 2001, Molecular cell.

[93]  Sequencing bacterial artificial chromosomes. , 2001, Methods in molecular biology.

[94]  Harry F. Noller,et al.  The Path of Messenger RNA through the Ribosome , 2001, Cell.

[95]  M. Ehrenberg,et al.  A Posttermination Ribosomal Complex Is the Guanine Nucleotide Exchange Factor for Peptide Release Factor RF3 , 2001, Cell.

[96]  S. Hedges,et al.  Molecular Evidence for the Early Colonization of Land by Fungi and Plants , 2001, Science.

[97]  B. Barrell,et al.  Subtelomeric sequence from the right arm of Schizosaccharomyces pombe chromosome I contains seven permease genes , 2001, Yeast.

[98]  T. Earnest,et al.  Crystal Structure of the Ribosome at 5.5 Å Resolution , 2001, Science.

[99]  Alex Bateman,et al.  The InterPro database, an integrated documentation resource for protein families, domains and functional sites , 2001, Nucleic Acids Res..

[100]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[101]  Mutations in the GTPase Center of Escherichia coli 23S rRNA Indicate Release Factor 2-Interactive Sites , 2002, Journal of bacteriology.

[102]  M. Ehrenberg,et al.  Release of peptide promoted by the GGQ motif of class 1 release factors regulates the GTPase activity of RF3. , 2002, Molecular cell.

[103]  L. Frolova,et al.  Highly conserved NIKS tetrapeptide is functionally essential in eukaryotic translation termination factor eRF1. , 2002, RNA.

[104]  Dmitrij Frishman,et al.  MIPS: a database for genomes and protein sequences , 1999, Nucleic Acids Res..

[105]  Y. Inagaki,et al.  Convergence and constraint in eukaryotic release factor 1 (eRF1) domain 1: the evolution of stop codon specificity. , 2002, Nucleic acids research.

[106]  M. Uno,et al.  Polypeptide release at sense and noncognate stop codons by localized charge-exchange alterations in translational release factors , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[107]  C. Ball,et al.  Saccharomyces Genome Database. , 2002, Methods in enzymology.

[108]  J. Hayles,et al.  Molecular cloning and sequence analysis of mutant alleles of the fission yeast cdc2 protein kinase gene: Implications for cdc2+ protein structure and function , 1989, Molecular and General Genetics MGG.

[109]  Reorientation of the distal region in linkage group IIR of fission yeast , 1993, Current Genetics.

[110]  Tomohiro Matsumoto,et al.  Structure of the fission yeast centromere cen3: Direct analysis of the reiterated inverted region , 1991, Chromosoma.

[111]  J. Hegemann,et al.  Chromatin digestion with restriction endonucleases reveals 150–160 bp of protected DNA in the centromere of chromosome XIV in Saccharomyces cerevisiae , 1989, Molecular and General Genetics MGG.