The genome sequence of Schizosaccharomyces pombe
暂无分享,去创建一个
B. Barrell | A. Goffeau | B. Purnelle | G. Volckaert | J. Sgouros | S. Hunt | D. Ussery | A. Fraser | R. Gwilliam | M. Quail | F. Galibert | G. Hodgson | G. V. Shpakovski | K. James | Ruth Taylor | T. Lowe | J. Revuelta | H. Lehrach | R. Wambutt | W. Zimmermann | V. Wood | K. Mungall | M. Jones | R. Reinhardt | W. McCombie | S. Bowman | I. Paulsen | Kim M Rutherford | M. Rajandream | M. Lyne | R. Lyne | A. Stewart | N. Peat | J. Hayles | S. Baker | D. Basham | K. Brooks | D. Brown | S. Brown | T. Chillingworth | C. Churcher | M. Collins | R. Connor | A. Cronin | P. Davis | T. Feltwell | A. Fraser | S. Gentles | A. Goble | N. Hamlin | D. Harris | J. Hidalgo | S. Holroyd | T. Hornsby | S. Howarth | E. Huckle | K. Jagels | L. Jones | S. Leather | S. Mcdonald | J. Mclean | P. Mooney | S. Moule | L. Murphy | D. Niblett | C. Odell | K. Oliver | S. O'neil | D. Pearson | E. Rabbinowitsch | K. Rutherford | S. Rutter | D. Saunders | K. Seeger | S. Sharp | J. Skelton | M. Simmonds | R. Squares | S. Squares | K. Stevens | K. Taylor | R. Taylor | A. Tivey | S. Walsh | T. Warren | S. Whitehead | J. Woodward | R. Aert | J. Robben | B. Grymonprez | I. Weltjens | E. Vanstreels | M. Rieger | M. Schäfer | S. Müller-Auer | C. Gabel | M. Fuchs | C. Fritzc | E. Holzer | D. Moestl | H. Hilbert | K. Borzym | I. Langer | A. Beck | T. Pohl | P. Eger | H. Wedler | É. Cadieu | S. Dréano | S. Gloux | V. Lelaure | S. Mottier | S. Aves | Z. Xiang | C. Hunt | K. Moore | S. M. Hurst | M. Lucas | M. Rochet | C. Gaillardin | V. A. Tallada | A. Garzón | G. Thode | R. Daga | L. Cruzado | J. Jiménez | M. Sánchez | F. Rey | J. Benito | A. Dominguez | S. Moreno | J. Armstrong | S. Forsburg | L. Cerrutti | J. Potashkin | P. Nurse | S. Müller-Auer | C. Gaillardin | M. Sánchez | M. Jones | M. Schafer | M. Schäfer | M. Jones | M. Jones | David M. Brown | Lisa Jones | Michael P. Jones | S. Muller-Auer | K. Taylor | A. Domínguez | L. Jones
[1] J. Mitchison,et al. The growth of single cells. I. Schizosaccharomyces pombe. , 1957, Experimental cell research.
[2] C. Kurland,et al. Nucleoside triphosphate regeneration decreases the frequency of translation errors. , 1979, Proceedings of the National Academy of Sciences of the United States of America.
[3] J. Mao,et al. The 5S RNA genes of Schizosaccharomyces pombe. , 1982, Nucleic acids research.
[4] D. Söll,et al. Arrangement of the ribosomal RNA genes in Schizosaccharomyces pombe , 1982, FEBS letters.
[5] Dieter Söll,et al. The 5.8S RNA gene sequence and the ribosomal repeat of Schizosaccharomyces pombe. , 1982, Nucleic acids research.
[6] G. Fink,et al. The relationship between the "TATA" sequence and transcription initiation sites at the HIS4 gene of Saccharomyces cerevisiae. , 1985, Proceedings of the National Academy of Sciences of the United States of America.
[7] Ronald W. Davis,et al. Functional selection and analysis of yeast centromeric DNA , 1985, Cell.
[8] P. Russell,et al. Transcription of the triose-phosphate-isomerase gene of Schizosaccharomyces pombe initiates from a start point different from that in Saccharomyces cerevisiae. , 1985, Gene.
[9] M. Heel,et al. Exact filters for general geometry three dimensional reconstruction , 1986 .
[10] D. Mccormick. Sequence the Human Genome , 1986, Bio/Technology.
[11] O. Niwa,et al. Chromosome walking shows a highly homologous repetitive sequence present in all the centromere regions of fission yeast , 1986, The EMBO journal.
[12] R. Cedergren,et al. The mitochondrial genome of the fission yeast, Schizosaccharomyces pombe. Sequence of the large-subunit ribosomal RNA gene, comparison of potential secondary structure in fungal mitochondrial large-subunit rRNAs and evolutionary considerations. , 1987, European journal of biochemistry.
[13] G. Fink,et al. Pseudogenes in yeast? , 1987, Cell.
[14] C. Cantor,et al. An electrophoretic karyotype for Schizosaccharomyces pombe by pulsed field gel electrophoresis. , 1987, Nucleic acids research.
[15] Tom Maniatis,et al. The role of small nuclear ribonucleoprotein particles in pre-mRNA splicing , 1987, Nature.
[16] M. Baum,et al. Structural organization and functional analysis of centromeric DNA in the fission yeast Schizosaccharomyces pombe , 1988, Molecular and cellular biology.
[17] D. Lipman,et al. Improved tools for biological sequence comparison. , 1988, Proceedings of the National Academy of Sciences of the United States of America.
[18] Tomohiro Matsumoto,et al. Composite motifs and repeat symmetry in S. pombe centromeres: Direct analysis by integration of Notl restriction sites , 1989, Cell.
[19] M. Baum,et al. Functional analysis of a centromere from fission yeast: a role for centromere-specific repeated DNA sequences , 1990, Molecular and cellular biology.
[20] E. Myers,et al. Basic local alignment search tool. , 1990, Journal of molecular biology.
[21] Functional analysis of a centromere from fission yeast: a role for centromere-specific repeated DNA sequences , 1990 .
[22] W. Tate,et al. Localization of the release factor-2 binding site on 70 S ribosomes by immuno-electron microscopy. , 1990, Journal of molecular biology.
[23] O. Niwa,et al. A large number of tRNA genes are symmetrically located in fission yeast centromeres. , 1991, Journal of molecular biology.
[24] J. Zou,et al. Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.
[25] T. Marr,et al. A 13 kb resolution cosmid map of the 14 Mb fission yeast genome by nonrandom sequence-tagged site mapping , 1993, Cell.
[26] S V Evans,et al. SETOR: hardware-lighted three-dimensional solid model representations of macromolecules. , 1993, Journal of molecular graphics.
[27] Hans Lehrach,et al. High resolution cosmid and P1 maps spanning the 14 Mb genome of the fission yeast S. pombe , 1993, Cell.
[28] M. Baum,et al. The centromeric K-type repeat and the central core are together sufficient to establish a functional Schizosaccharomyces pombe centromere. , 1994, Molecular biology of the cell.
[29] W. Tate,et al. A single proteolytic cleavage in release factor 2 stabilizes ribosome binding and abolishes peptidyl-tRNA hydrolysis activity. , 1994, The Journal of biological chemistry.
[30] Erik L. L. Sonnhammer,et al. A workbench for large-scale sequence homology analysis , 1994, Comput. Appl. Biosci..
[31] A. Hyman,et al. Structure and function of kinetochores in budding yeast. , 1995, Annual review of cell and developmental biology.
[32] J. Bonfield,et al. A new DNA sequence assembly program. , 1995, Nucleic acids research.
[33] W. Kabsch,et al. The actin fold , 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
[34] S Thirup,et al. Crystal Structure of the Ternary Complex of Phe-tRNAPhe, EF-Tu, and a GTP Analog , 1995, Science.
[35] B. Barrell,et al. Life with 6000 Genes , 1996, Science.
[36] J. Lobry. Asymmetric substitution patterns in the two DNA strands of bacteria. , 1996, Molecular biology and evolution.
[37] P. Nurse,et al. A single fission yeast mitotic cyclin B p34cdc2 kinase promotes both S‐phase and mitosis in the absence of G1 cyclins. , 1996, The EMBO journal.
[38] Y. Nakamura,et al. Conserved motifs in prokaryotic and eukaryotic polypeptide release factors: tRNA-protein mimicry hypothesis. , 1996, Proceedings of the National Academy of Sciences of the United States of America.
[39] T J Gibson,et al. PairWise and SearchWise: finding the optimal alignment in a simultaneous comparison of a protein profile against all DNA translation frames. , 1996, Nucleic acids research.
[40] Thomas L. Madden,et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.
[41] André Goffeau,et al. The yeast genome directory. , 1997, Nature.
[42] K. H. Wolfe,et al. Molecular evidence for an ancient duplication of the entire yeast genome , 1997, Nature.
[43] M. Ehrenberg,et al. Release factor RF3 in E.coli accelerates the dissociation of release factors RF1 and RF2 from the ribosome in a GTP‐dependent manner , 1997, The EMBO journal.
[44] Rolf Apweiler,et al. The SWISS-PROT protein sequence data bank and its supplement TrEMBL , 1997, Nucleic Acids Res..
[45] S. Eddy,et al. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.
[46] J. Berg. Genome sequence of the nematode C. elegans: a platform for investigating biology. , 1998, Science.
[47] Andrew Smith. Genome sequence of the nematode C-elegans: A platform for investigating biology , 1998 .
[48] R. Huber,et al. The complete genome of the hyperthermophilic bacterium Aquifex aeolicus , 1998, Nature.
[49] cDNA Catalog of Fission Yeast (Schizosaccharomyces pombe) and Its Application for Cloning of Mammalian DNA Repair Gene , 1998 .
[50] Temple F. Smith,et al. Comparison of the complete protein sets of worm and yeast: orthology and divergence. , 1998, Science.
[51] David Botstein,et al. SGD: Saccharomyces Genome Database , 1998, Nucleic Acids Res..
[52] D. Voytas,et al. Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. , 1998, Genome research.
[53] Biodefence mechanisms against environmental stress , 1998 .
[54] H. Erickson,et al. Atomic structures of tubulin and FtsZ. , 1998, Trends in cell biology.
[55] L. Lundin,et al. Gene duplications in early metazoan evolution. , 1999, Seminars in cell & developmental biology.
[56] Robert D. Finn,et al. Pfam 3.1: 1313 multiple alignments and profile HMMs match the majority of proteins , 1999, Nucleic Acids Res..
[57] A. Bairoch,et al. The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1999 , 1999, Nucleic Acids Res..
[58] Dmitrij Frishman,et al. MIPS: a database for genomes and protein sequences , 1999, Nucleic Acids Res..
[59] R George,et al. An exploration of the sequence of a 2.9-Mb region of the genome of Drosophila melanogaster: the Adh region. , 1999, Genetics.
[60] P. Russell,et al. Nuclear localization of Cdc25 is regulated by DNA damage and a 14-3-3 protein , 1999, Nature.
[61] H. Mori,et al. Phylogenetic analysis of the third hsp70 homolog in Escherichia coli; a novel member of the Hsc66 subfamily and its possible co-chaperone. , 1999, DNA research : an international journal for rapid publication of reports on genes and genomes.
[62] R. Gwilliam,et al. The complete nucleotide sequence of chromosome 3 of Plasmodium falciparum , 1999, Nature.
[63] O. White,et al. Global transposon mutagenesis and a minimal Mycoplasma genome. , 1999, Science.
[64] T. Merkulova,et al. C‐terminal domains of human translation termination factors eRF1 and eRF3 mediate their in vivo interaction , 1999, FEBS letters.
[65] J. McCutcheon,et al. A Detailed View of a Ribosomal Active Site The Structure of the L11–RNA Complex , 1999, Cell.
[66] F. Antequera,et al. Organization of DNA replication origins in the fission yeast genome , 1999, The EMBO journal.
[67] E. Lattman,et al. Crystal structure of a conserved ribosomal protein-RNA complex. , 1999, Science.
[68] I. Stansfield,et al. Terminating eukaryote translation: domain 1 of release factor eRF1 functions in stop codon recognition. , 2000, RNA.
[69] D. Barford,et al. The Crystal Structure of Human Eukaryotic Release Factor eRF1—Mechanism of Stop Codon Recognition and Peptidyl-tRNA Hydrolysis , 2000, Cell.
[70] The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana , 2000, Nature.
[71] Y. Nakamura,et al. Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti (supplement). , 2000, DNA research : an international journal for rapid publication of reports on genes and genomes.
[72] Stephen M. Mount,et al. The genome sequence of Drosophila melanogaster. , 2000, Science.
[73] The yeast nucleus , 2000 .
[74] R. Allshire,et al. Distinct protein interaction domains and protein spreading in a complex centromere. , 2000, Genes & development.
[75] Kim Rutherford,et al. Artemis: sequence visualization and annotation , 2000, Bioinform..
[76] Matthias Sipiczki,et al. Where does fission yeast sit on the tree of life? , 2000, Genome Biology.
[77] Rolf Apweiler,et al. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000 , 2000, Nucleic Acids Res..
[78] Michael E. Cusick,et al. The Yeast Proteome Database (YPD) and Caenorhabditis elegans Proteome Database (WormPD): comprehensive resources for the organization and comparison of model organism protein information , 2000, Nucleic Acids Res..
[79] B. Dujon,et al. Genomic Exploration of the Hemiascomycetous Yeasts: 4. The genome of Saccharomyces cerevisiae revisited , 2000, FEBS letters.
[80] M. Heel,et al. Single-particle electron cryo-microscopy: towards atomic resolution , 2000, Quarterly Reviews of Biophysics.
[81] H. Noller,et al. Functional sites of interaction between release factor RF1 and the ribosome , 2000, Nature Structural Biology.
[82] Evelyn Camon,et al. The EMBL Nucleotide Sequence Database , 2000, Nucleic Acids Res..
[83] A. Nekrutenko,et al. Densities, length proportions, and other distributional features of repetitive sequences in the human genome estimated from 430 megabases of genomic sequence. , 2000, Gene.
[84] T. Humphrey,et al. DNA damage and cell cycle control in Schizosaccharomyces pombe. , 2000, Mutation research.
[85] H. Robertson,et al. The large srh family of chemoreceptor genes in Caenorhabditis nematodes reveals processes of genome evolution involving large duplications and deletions and intron gains and losses. , 2000, Genome research.
[86] K. Watanabe,et al. Proteolytic fragmentation of polypeptide release factor 1 of Thermus thermophilus and crystallization of the stable fragments. , 2000, Biochimie.
[87] Y. Nakamura,et al. Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. , 2000, DNA research : an international journal for rapid publication of reports on genes and genomes.
[88] International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome , 2001, Nature.
[89] Gerald R. Smith,et al. Meiotic recombination and chromosome segregation in Schizosaccharomyces pombe , 2001, Proceedings of the National Academy of Sciences of the United States of America.
[90] B. Graveley. Alternative splicing: increasing diversity in the proteomic world. , 2001, Trends in genetics : TIG.
[91] B. Barrell,et al. A Re-Annotation of the Saccharomyces Cerevisiae Genome , 2001, Comparative and functional genomics.
[92] B. Vestergaard,et al. Bacterial polypeptide release factor RF2 is structurally distinct from eukaryotic eRF1. , 2001, Molecular cell.
[93] Sequencing bacterial artificial chromosomes. , 2001, Methods in molecular biology.
[94] Harry F. Noller,et al. The Path of Messenger RNA through the Ribosome , 2001, Cell.
[95] M. Ehrenberg,et al. A Posttermination Ribosomal Complex Is the Guanine Nucleotide Exchange Factor for Peptide Release Factor RF3 , 2001, Cell.
[96] S. Hedges,et al. Molecular Evidence for the Early Colonization of Land by Fungi and Plants , 2001, Science.
[97] B. Barrell,et al. Subtelomeric sequence from the right arm of Schizosaccharomyces pombe chromosome I contains seven permease genes , 2001, Yeast.
[98] T. Earnest,et al. Crystal Structure of the Ribosome at 5.5 Å Resolution , 2001, Science.
[99] Alex Bateman,et al. The InterPro database, an integrated documentation resource for protein families, domains and functional sites , 2001, Nucleic Acids Res..
[100] J. V. Moran,et al. Initial sequencing and analysis of the human genome. , 2001, Nature.
[101] Mutations in the GTPase Center of Escherichia coli 23S rRNA Indicate Release Factor 2-Interactive Sites , 2002, Journal of bacteriology.
[102] M. Ehrenberg,et al. Release of peptide promoted by the GGQ motif of class 1 release factors regulates the GTPase activity of RF3. , 2002, Molecular cell.
[103] L. Frolova,et al. Highly conserved NIKS tetrapeptide is functionally essential in eukaryotic translation termination factor eRF1. , 2002, RNA.
[104] Dmitrij Frishman,et al. MIPS: a database for genomes and protein sequences , 1999, Nucleic Acids Res..
[105] Y. Inagaki,et al. Convergence and constraint in eukaryotic release factor 1 (eRF1) domain 1: the evolution of stop codon specificity. , 2002, Nucleic acids research.
[106] M. Uno,et al. Polypeptide release at sense and noncognate stop codons by localized charge-exchange alterations in translational release factors , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[107] C. Ball,et al. Saccharomyces Genome Database. , 2002, Methods in enzymology.
[108] J. Hayles,et al. Molecular cloning and sequence analysis of mutant alleles of the fission yeast cdc2 protein kinase gene: Implications for cdc2+ protein structure and function , 1989, Molecular and General Genetics MGG.
[109] Reorientation of the distal region in linkage group IIR of fission yeast , 1993, Current Genetics.
[110] Tomohiro Matsumoto,et al. Structure of the fission yeast centromere cen3: Direct analysis of the reiterated inverted region , 1991, Chromosoma.
[111] J. Hegemann,et al. Chromatin digestion with restriction endonucleases reveals 150–160 bp of protected DNA in the centromere of chromosome XIV in Saccharomyces cerevisiae , 1989, Molecular and General Genetics MGG.