Limit behaviour of Weyl coefficients

We study the sets of radial or nontangential limit points towards i∞ of a Nevanlinna function q. Given a nonempty, closed, and connected subset L of C+, we explicitly construct a Hamiltonian H such that the radialand outer angular cluster sets towards i∞ of the Weyl coefficient qH are both equal to L. Our method is based on a study of the continuous group action of rescaling operators on the set of all Hamiltonians. AMS MSC 2010: 34B20, 30D40, 37J99, 30J99

[1]  D. Suarez,et al.  On Blaschke products, Bloch functions and normal functions , 2011 .

[2]  C. Remling Spectral Theory of Canonical Systems , 2018 .

[3]  Yoshimi Saito,et al.  Eigenfunction Expansions Associated with Second-order Differential Equations for Hilbert Space-valued Functions , 1971 .

[4]  H. Winkler,et al.  Boundary-value problems for two-dimensional canonical systems , 2000 .

[5]  J. K. Hunter,et al.  Measure Theory , 2007 .

[6]  F. V. Atkinson,et al.  Discrete and Continuous Boundary Problems , 1964 .

[7]  J. Behrndt,et al.  Boundary Value Problems, Weyl Functions, and Differential Operators , 2020, Monographs in Mathematics.

[8]  R. Romanov Canonical systems and de Branges spaces , 2014, 1408.6022.

[9]  M. Fabian,et al.  Functional Analysis and Infinite-Dimensional Geometry , 2001 .

[10]  Bz,et al.  SOME HILBERT SPACES OF ENTIRE FUNCTIONS. II , 2010 .

[11]  B. Levin,et al.  Distribution of zeros of entire functions , 1964 .

[12]  A. Lohwater,et al.  The Theory of Cluster Sets , 1966 .

[13]  F. Gesztesy,et al.  On Matrix–Valued Herglotz Functions , 1997, funct-an/9712004.

[14]  Louis de Branges,et al.  Hilbert spaces of entire functions , 1968 .

[15]  J. J. Donaire Radial Behaviour of Inner Functions in B0 , 2001 .

[16]  H. Weyl,et al.  Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen , 1910 .

[17]  G. Teschl,et al.  Spectral asymptotics for canonical systems , 2014, 1412.0277.

[18]  I. N. Sneddon,et al.  Boundary value problems , 2007 .

[19]  Shinzo Watanabe,et al.  Asymptotic behavior of spectral measures of Krein’s and Kotani’s strings , 2010 .

[20]  H. Woracek,et al.  Canonical systems whose Weyl coefficients have regularly varying asymptotics , 2022, 2201.01522.

[21]  Y. Kasahara Spectral theory of generalized second order differential operators and its applications to Markov processes , 1975 .