Non-additive entropies and statistical mechanics at the edge of chaos: a bridge between natural and social sciences

The Boltzmann–Gibbs (BG) statistical mechanics constitutes one of the pillars of contemporary theoretical physics. It is constructed upon the other pillars—classical, quantum, relativistic mechanics and Maxwell equations for electromagnetism—and its foundations are grounded on the optimization of the BG (additive) entropic functional SBG=−k∑ipiln⁡pi. Its use in the realm of classical mechanics is legitimate for vast classes of nonlinear dynamical systems under the assumption that the maximal Lyapunov exponent is positive (currently referred to as strong chaos), and its validity has been experimentally verified in countless situations. It fails however when the maximal Lyapunov exponent vanishes (referred to as weak chaos), which is virtually always the case with complex natural, artificial and social systems. To overcome this type of weakness of the BG theory, a generalization was proposed in 1988 grounded on the non-additive entropic functional Sq=k((1−∑ipiq)/(q−1)) (q∈R; S1=SBG). The index q and related ones are to be calculated, whenever mathematically tractable, from first principles and reflect the specific class of weak chaos. We review here the basics of this generalization and illustrate its validity with selected examples aiming to bridge natural and social sciences. This article is part of the theme issue ‘Thermodynamics 2.0: Bridging the natural and social sciences (Part 2)’.

[1]  C. Tsallis,et al.  Comparative study of the heavy-quark dynamics with the Fokker-Planck equation and the Plastino-Plastino equation , 2023, Physics Letters B.

[2]  R. Wester,et al.  Tunnelling measured in a very slow ion–molecule reaction , 2023, Nature.

[3]  A. Sharafati,et al.  Developing a generic relation for predicting sediment pick-up rate using symbolic soft computing techniques , 2022, Environmental Science and Pollution Research.

[4]  Anderson P. Avila-Santos,et al.  Information Theory for Biological Sequence Classification: A Novel Feature Extraction Technique Based on Tsallis Entropy , 2022, Entropy.

[5]  S. Waheed,et al.  Tsallis HDE-based reconstruction via correspondence scheme in a generalized torsion scalar theory , 2022, The European Physical Journal Plus.

[6]  B. Schäfer,et al.  Spatial heterogeneity of air pollution statistics in Europe , 2022, Scientific Reports.

[7]  H. E. Sevil,et al.  Entropy-Based Distributed Behavior Modeling for Multi-Agent UAVs , 2022, Drones.

[8]  B. Boghosian,et al.  A generalization of the standard map and its statistical characterization , 2022, Scientific Reports.

[9]  C. Tsallis,et al.  Complex network growth model: Possible isomorphism between nonextensive statistical mechanics and random geometry. , 2022, Chaos.

[10]  C. Tsallis,et al.  Probabilistic Models with Nonlocal Correlations: Numerical Evidence of Q-Large Deviation Theory , 2022, SSRN Electronic Journal.

[11]  V. Sardana,et al.  Chirplet transform‐based machine‐learning approach towards classification of cognitive state change using galvanic skin response and photoplethysmography signals , 2022, Expert Syst. J. Knowl. Eng..

[12]  C. Tsallis Entropy , 2022, Thermodynamic Weirdness.

[13]  C. Tsallis,et al.  Thermodynamically consistent entropic late-time cosmological acceleration , 2022, The European Physical Journal C.

[14]  C. Tsallis,et al.  Thermodynamically consistent entropic-force cosmology , 2022, Physics Letters B.

[15]  C. Tsallis,et al.  Statistical mechanical approach of complex networks with weighted links , 2021, Journal of Statistical Mechanics: Theory and Experiment.

[16]  C. Tsallis,et al.  Entropic extensivity and large deviations in the presence of strong correlations , 2021, Physica D: Nonlinear Phenomena.

[17]  Thomas Villmann,et al.  The Resolved Mutual Information Function as a Structural Fingerprint of Biomolecular Sequences for Interpretable Machine Learning Classifiers , 2021, Entropy.

[18]  Hamid A. Jalab,et al.  Efficient classification of COVID-19 CT scans by using q-transform model for feature extraction , 2021, PeerJ Comput. Sci..

[19]  J. Garza,et al.  Tsallis entropy: A comparative study for the 1s2-state of helium atom , 2021 .

[20]  T. Golanbari,et al.  Tsallis holographic dark energy for inflation , 2021, 2101.06378.

[21]  C. Tsallis,et al.  Connecting complex networks to nonadditive entropies , 2020, Scientific Reports.

[22]  W. D. da Silva,et al.  Cosmological perturbations in the Tsallis holographic dark energy scenarios , 2020, The European Physical Journal Plus.

[23]  C. Martínez-Flores,et al.  The information theory of the helium atom in screened Coulomb potentials , 2020 .

[24]  D. Nath,et al.  Generalized quantum similarity index: An application to pseudoharmonic oscillator with isospectral potentials in 3D , 2020 .

[25]  N. Ay,et al.  Approaching a large deviation theory for complex systems , 2020, Nonlinear Dynamics.

[26]  M. Zeama,et al.  Calculation of information entropies for the 1s 2 state of helium‐like ions , 2020 .

[27]  A. Bountis,et al.  Cauchy distributions for the integrable standard map , 2020, 2004.12912.

[28]  Ernesto P. Borges,et al.  Mass distributions of meteorites , 2020 .

[29]  André F. T. Martins,et al.  Sparse Text Generation , 2020, EMNLP.

[30]  C. Anteneodo,et al.  Landscape-induced spatial oscillations in population dynamics , 2020, Scientific Reports.

[31]  Andrea Rapisarda,et al.  A generalised model for asymptotically-scale-free geographical networks , 2019, Journal of Statistical Mechanics: Theory and Experiment.

[32]  Yahui Zheng,et al.  The nonextensive Bose-Einstein condensation and photon gas with parameter transformation , 2019, The European Physical Journal Plus.

[33]  C. Beck,et al.  Superstatistical approach to air pollution statistics , 2019, Physical Review Research.

[34]  A. Deppman,et al.  Fractals, nonextensive statistics, and QCD , 2019, Physical Review D.

[35]  Y. K. Ho,et al.  Benchmark calculations of Rényi, Tsallis entropies, and Onicescu information energy for ground state helium using correlated Hylleraas wave functions , 2019, International Journal of Quantum Chemistry.

[36]  Alessandro Pluchino,et al.  Acoustic emissions in compression of building materials: q-statistics enables the anticipation of the breakdown point , 2019, The European Physical Journal Special Topics.

[37]  Vincenzo Aquilanti,et al.  From statistical thermodynamics to molecular kinetics: the change, the chance and the choice , 2018, Rendiconti Lincei. Scienze Fisiche e Naturali.

[38]  C. Tsallis,et al.  Scaling properties of d-dimensional complex networks. , 2018, Physical review. E.

[39]  C. Tsallis,et al.  Validity and failure of the Boltzmann weight , 2018, EPL (Europhysics Letters).

[40]  C. Anteneodo,et al.  Nonlinear population dynamics in a bounded habitat. , 2018, Journal of theoretical biology.

[41]  J. S. Andrade,et al.  Overdamped dynamics of particles with repulsive power-law interactions , 2018, Physical Review E.

[42]  Xiaohua Tong,et al.  Comparison of metaheuristic cellular automata models: A case study of dynamic land use simulation in the Yangtze River Delta , 2018, Comput. Environ. Urban Syst..

[43]  A. de Marcos,et al.  Evidence for criticality in financial data , 2018 .

[44]  Yu-Xuan Fu,et al.  Switches in a genetic regulatory system under multiplicative non-Gaussian noise. , 2017, Journal of theoretical biology.

[45]  Grzegorz Wilk,et al.  Oscillations in Multiparticle Production Processes , 2017, Entropy.

[46]  Constantino Tsallis,et al.  Economics and Finance: q-Statistical Stylized Features Galore , 2017, Entropy.

[47]  C. Tsallis,et al.  Role of dimensionality in preferential attachment growth in the Bianconi–Barabási model , 2017, 1705.00014.

[48]  Eric Marcon,et al.  The generalized Simpson’s entropy is a measure of biodiversity , 2017, PloS one.

[49]  Piergiulio Tempesta,et al.  Uniqueness and characterization theorems for generalized entropies , 2017, ArXiv.

[50]  Vincenzo Aquilanti,et al.  Deformed transition‐state theory: Deviation from Arrhenius behavior and application to bimolecular hydrogen transfer reaction rates in the tunneling regime , 2017, J. Comput. Chem..

[51]  Takuya Takahashi,et al.  On the use of mass scaling for stable and efficient simulated tempering with molecular dynamics , 2016, J. Comput. Chem..

[52]  Dimos Triantis,et al.  Acoustic Emission Analysis of Cement Mortar Specimens During Three Point Bending Tests , 2016 .

[53]  Tom Leinster,et al.  Maximizing diversity in biology and beyond , 2015, Entropy.

[54]  Constantino Tsallis,et al.  Role of dimensionality in complex networks , 2015, Scientific Reports.

[55]  Vincent Richefeu,et al.  Experimental Validation of a Nonextensive Scaling Law in Confined Granular Media. , 2015, Physical review letters.

[56]  C. Tsallis,et al.  From QCD-based hard-scattering to nonextensive statistical mechanical descriptions of transverse momentum spectra in high-energy pp and pp¯ collisions , 2015, 1505.02022.

[57]  Grzegorz Wilk,et al.  Tsallis Distribution Decorated with Log-Periodic Oscillation , 2015, Entropy.

[58]  Ernesto P. Borges,et al.  The standard map: From Boltzmann-Gibbs statistics to Tsallis statistics , 2015, Scientific Reports.

[59]  C. Tsallis,et al.  Connection between Dirichlet distributions and a scale-invariant probabilistic model based on Leibniz-like pyramids , 2014 .

[60]  Armin Bunde,et al.  Universal Internucleotide Statistics in Full Genomes: A Footprint of the DNA Structure and Packaging? , 2014, PloS one.

[61]  Ernesto P. Borges,et al.  Non-extensive statistical analysis of meteor showers and lunar flashes , 2014, 1411.4320.

[62]  Z.Wlodarczyk,et al.  Tsallis distribution with complex nonextensivity parameter q , 2014, 1403.3263.

[63]  N. Komatsu,et al.  Evolution of the universe in entropic cosmologies via different formulations , 2014, 1402.3755.

[64]  E. Lutz,et al.  Beyond Boltzmann–Gibbs statistical mechanics in optical lattices , 2013, Nature Physics.

[65]  Shigeo Kimura,et al.  Entropic cosmology for a generalized black-hole entropy , 2013, 1307.5949.

[66]  G. Wilk,et al.  Tsallis Fits to pT Spectra and Relativistic Hard Scattering in pp Collisions at LHC , 2013 .

[67]  C. Tsallis,et al.  Reply to Comment on “Towards a large deviation theory for strongly correlated systems” , 2012, 1211.2124.

[68]  H. Touchette Comment on “Towards a large deviation theory for strongly correlated systems” , 2012, 1209.2611.

[69]  Constantino Tsallis,et al.  Towards a large deviation theory for strongly correlated systems , 2012 .

[70]  Lucas Lacasa,et al.  Feigenbaum graphs at the onset of chaos , 2012, 1205.1902.

[71]  Ernesto P. Borges,et al.  Nonextensive distributions of asteroid rotation periods and diameters , 2012 .

[72]  Constantino Tsallis,et al.  Black hole thermodynamical entropy , 2012, 1202.2154.

[73]  Roberto Marcondes Cesar Junior,et al.  Inference of gene regulatory networks from time series by Tsallis entropy , 2011, BMC Systems Biology.

[74]  J. S. Dehesa,et al.  Quantum potentials with q-Gaussian ground states , 2010, 1011.3459.

[75]  Prem Kumar Kalra,et al.  A novel automatic microcalcification detection technique using Tsallis entropy & a type II fuzzy index , 2010, Comput. Math. Appl..

[76]  A A Moreira,et al.  Thermostatistics of overdamped motion of interacting particles. , 2010, Physical review letters.

[77]  Alexandra C. Tsallis,et al.  ENTROPY, A UNIFYING CONCEPT: FROM PHYSICS TO COGNITIVE PSYCHOLOGY , 2010 .

[78]  Wen-Jie Xie,et al.  On the growth of primary industry and population of China’s counties , 2010, 1001.4554.

[79]  Eric P. Xing,et al.  Nonextensive Information Theoretic Kernels on Measures , 2009, J. Mach. Learn. Res..

[80]  Constantino Tsallis,et al.  Generalization of symmetric alpha-stable Lévy distributions for q>1. , 2009, Journal of mathematical physics.

[81]  José María Sarabia,et al.  The Pareto-positive stable distribution: A new descriptive model for city size data , 2009 .

[82]  Stefan Thurner,et al.  Limit distributions of scale-invariant probabilistic models of correlated random variables with the q-Gaussian as an explicit example , 2009, 0908.4438.

[83]  Kausik Gangopadhyay,et al.  City size distributions for India and China , 2009, 1001.0828.

[84]  C. Tsallis Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World , 2009 .

[85]  Sergio A. Cannas,et al.  A Tsallis’ statistics based neural network model for novel word learning , 2009 .

[86]  A. D. Anastasiadis,et al.  A characterization of the scientific impact of Brazilian institutions , 2009, 0902.0554.

[87]  Aristoklis D. Anastasiadis,et al.  Tsallis q-exponential describes the distribution of scientific citations—a new characterization of the impact , 2008, Scientometrics.

[88]  R. S. Mendes,et al.  A unified index to measure ecological diversity and species rarity , 2008 .

[89]  C. Amador,et al.  Evidence for energy regularity in the Mendeleev periodic table , 2008, 0805.1655.

[90]  Constantino Tsallis,et al.  On a q-Central Limit Theorem Consistent with Nonextensive Statistical Mechanics , 2008 .

[91]  Constantino Tsallis,et al.  Closer look at time averages of the logistic map at the edge of chaos. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[92]  P. Douglas,et al.  Tunable Tsallis distributions in dissipative optical lattices. , 2006, Physical review letters.

[93]  S. Thurner,et al.  Nonextensive aspects of self-organized scale-free gas-like networks , 2005, cond-mat/0506140.

[94]  O. Penrose Foundations of Statistical Mechanics: A Deductive Treatment , 2005 .

[95]  Constantino Tsallis,et al.  Asymptotically scale-invariant occupancy of phase space makes the entropy Sq extensive , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[96]  Francisco A. Tamarit,et al.  Human and Computer Learning: An Experimental Study , 2004, Complexus.

[97]  F. Baldovin,et al.  Nonextensive Pesin identity: exact renormalization group analytical results for the dynamics at the edge of chaos of the logistic map. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[98]  C. Beck,et al.  Defect turbulence and generalized statistical mechanics , 2003, cond-mat/0302623.

[99]  Giorgio Kaniadakis Statistical mechanics in the context of special relativity. II. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[100]  Giorgio Kaniadakis Statistical mechanics in the context of special relativity. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[101]  E. Lutz Anomalous diffusion and Tsallis statistics in an optical lattice , 2002, cond-mat/0210022.

[102]  C. Beck,et al.  Superstatistics , 2002, cond-mat/0205097.

[103]  C. Tsallis,et al.  Risk aversion in economic transactions , 2001, cond-mat/0109203.

[104]  Y. Sawada,et al.  Anomalous diffusion and non-Gaussian velocity distribution of Hydra cells in cellular aggregates , 2001 .

[105]  Marcelo A. Montemurro,et al.  Beyond the Zipf-Mandelbrot law in quantitative linguistics , 2001, ArXiv.

[106]  Giorgio Kaniadakis Non-linear kinetics underlying generalized statistics , 2001, cond-mat/0103467.

[107]  Walton,et al.  Equilibrium distribution of heavy quarks in fokker-planck dynamics , 1999, Physical review letters.

[108]  C. Tsallis,et al.  The role of constraints within generalized nonextensive statistics , 1998 .

[109]  M. Moret,et al.  Stochastic molecular optimization using generalized simulated annealing , 1998, J. Comput. Chem..

[110]  Sabre Kais,et al.  Comparison study of pivot methods for global optimization , 1997 .

[111]  C. Tsallis,et al.  Student's t- and r-distributions: Unified derivation from an entropic variational principle , 1997 .

[112]  A. R. Plastino,et al.  Non-extensive statistical mechanics and generalized Fokker-Planck equation , 1995 .

[113]  C. Tsallis,et al.  Anomalous diffusion in the presence of external forces: Exact time-dependent solutions and their thermostatistical basis. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[114]  C. Tsallis,et al.  Generalized simulated annealing , 1995, cond-mat/9501047.

[115]  A. R. Plastino,et al.  Stellar polytropes and Tsallis' entropy , 1993 .

[116]  C. Tsallis,et al.  Generalized statistical mechanics : connection with thermodynamics , 1991 .

[117]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[118]  S. Olbert Summary of Experimental Results from M.I.T. Detector on IMP-1 , 1969 .

[119]  V. Vasyliūnas,et al.  A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. , 1968 .

[120]  André F. T. Martins,et al.  Beyond Characters: Subword-level Morpheme Segmentation , 2022, SIGMORPHON.

[121]  Elcio H. Shiguemori,et al.  Lidar and Non-extensive Particle Filter for UAV Autonomous Navigation , 2020, Computational Intelligence in Emerging Technologies for Engineering Applications.

[122]  Z. Ma Measuring Microbiome Diversity and Similarity with Hill Numbers , 2018 .

[123]  J. K. Adkins,et al.  Observation of D 0 Meson Nuclear Modific ations in Au+Au Collisions at √ S NN =200 GeV , 2014 .

[124]  Stanly Steinberg,et al.  Generalization of symmetric α-stable Lévy distributions for q > 1 , 2009 .

[125]  S. Kitayama,et al.  Cultural neuroeconomics of intertemporal choice. , 2009, Neuro endocrinology letters.

[126]  N. Lehn,et al.  Contaminant Seeding in Bone by Different Irrigation Methods: An Experimental Study , 2005, Journal of orthopaedic trauma.

[127]  Marcelo A. Montemurro,et al.  A generalization of the Zipf-Mandelbrot Law in Linguistics , 2004 .

[128]  Sabre Kais,et al.  Pivot method for global optimization , 1997 .

[129]  D. Stariolo,et al.  Learning dynamics of simple perceptrons with non-extensive cost functions. , 1996, Network.

[130]  J. H. Binsack,et al.  Plasma studies with the IMP-2 satellite , 1966 .

[131]  George Kingsley Zipf,et al.  Human behavior and the principle of least effort , 1949 .

[132]  J. Gibbs Elementary Principles in Statistical Mechanics: Developed with Especial Reference to the Rational Foundation of Thermodynamics , 1902 .

[133]  C. Tsallis,et al.  Mathematical Foundations of Nonextensive Statistical Mechanics , 2022 .