Comparing composites of left and right derived functors

We introduce a new categorical framework for studying de- rived functors, and in particular for comparing composites of left and right derived functors. Our central observation is that model categories are the objects of a double category whose vertical and horizontal ar- rows are left and right Quillen functors, respectively, and that passage to derived functors is functorial at the level of this double category. The theory of conjunctions and mates in double categories, which generalizes the theory of adjunctions and mates in 2-categories, then gives us canon- ical ways to compare composites of left and right derived functors. We give a number of sample applications, most of which are improvements of existing proofs in the literature.

[1]  James Gillespie The flat model structure on complexes of sheaves , 2006 .

[2]  Marco Grandis,et al.  Adjoint for double categories , 2004 .

[3]  Mark W. Johnson,et al.  Model structures on the category of ex-spaces , 2002 .

[4]  Michael Cole Mixing model structures , 2006 .

[5]  E. Riehl Natural weak factorization systems in model structures , 2009 .

[6]  J. P. May,et al.  Isomorphisms between left and right adjoints , 2002, math/0206079.

[7]  G. M. Kelly,et al.  Two-dimensional monad theory , 1989 .

[8]  R. Street,et al.  Review of the elements of 2-categories , 1974 .

[9]  PSEUDO ALGEBRAS AND PSEUDO DOUBLE CATEGORIES , 2006, math/0608760.

[10]  Michael Cole Many homotopy categories are homotopy categories , 2006 .

[11]  André Joyal,et al.  Quasi-categories and Kan complexes , 2002 .

[12]  J. Jardine,et al.  Stable Homotopy Theory of Simplicial Presheaves , 1987, Canadian Journal of Mathematics.

[13]  W. Tholen,et al.  NATURAL WEAK FACTORIZATION SYSTEMS , 2006 .

[14]  Michael Shulman,et al.  Framed bicategories and monoidal fibrations , 2007, 0706.1286.

[15]  Michael A. Mandell,et al.  Model Categories of Diagram Spectra , 2001, Proceedings of the London Mathematical Society.

[16]  Masaki Kashiwara,et al.  Sheaves on Manifolds , 1990 .

[17]  Michael Shulman Parametrized spaces model locally constant homotopy sheaves , 2007, 0706.2874.

[18]  Ronald T. Brown,et al.  DOUBLE CATEGORIES, 2-CATEGORIES, THIN STRUCTURES AND CONNECTIONS , 1999 .

[19]  Richard Garner,et al.  Understanding the Small Object Argument , 2007, Appl. Categorical Struct..

[20]  Ronald Brown,et al.  Double groupoids and crossed modules , 1976 .

[21]  Ieke Moerdijk,et al.  Axiomatic homotopy theory for operads , 2002, math/0206094.

[22]  J. Lurie Higher Topos Theory , 2006, math/0608040.

[23]  James Gillespie Kaplansky classes and derived categories , 2007 .

[24]  J. P. May,et al.  Parametrized homotopy theory , 2006 .

[25]  Tibor Beke,et al.  Sheafifiable homotopy model categories , 2000, Mathematical Proceedings of the Cambridge Philosophical Society.

[26]  W. Dwyer,et al.  Homotopy Limit Functors on Model Categories and Homotopical Categories , 2005 .

[27]  Michael Shulman Ju n 20 07 PARAMETRIZED SPACES ARE LOCALLY CONSTANT HOMOTOPY SHEAVES , 2009 .

[28]  Marco Grandis,et al.  Limits in double categories , 1999 .

[29]  R. Vogt,et al.  Strong cofibrations and fibrations in enriched categories , 2002 .

[30]  Michael A. Mandell,et al.  Equivariant Orthogonal Spectra and S-Modules , 2002 .

[31]  Arne Strøm,et al.  The homotopy category is a homotopy category , 1972 .