Parameter Variability in Nanoscale Fabrics: Bottom-Up Integrated Exploration

Emerging nano-device based architectures will be impacted by parameter variation in conjunction with high defect rates. Variations in key physical parameters are caused by manufacturing imprecision as well as fundamental atomic scale randomness. In this paper, the impact of parameter variation on nanoscale computing fabrics is extensively studied through a novel integrated methodology across device, circuit and architectural levels. This integrated framework enables to study in detail the impact of physical parameter variation across all fabric layers for the first time. The framework, while generic, is explored extensively on the Nanoscale Application Specific Integrated Circuits (NASICs) nanowire fabric. For key physical parameters, the on current is found to vary by up to 3.5X. Circuit-level delay shows up to 40% deviation from nominal. Monte Carlo simulations using the architectural simulator found 67% nanoprocessor chips to operate below nominal frequencies due to variation. However, given high defect rates in nano-manufacturing, built-in fault tolerance needs to be incorporated for achieving acceptable yields. These techniques are shown to also ameliorate the effects of parameter variation.

[1]  K.K. Likharev,et al.  Reconfigurable Hybrid CMOS/Nanodevice Circuits for Image Processing , 2007, IEEE Transactions on Nanotechnology.

[2]  Roya Maboudian,et al.  Si Nanowire Bridges in Microtrenches: Integration of Growth into Device Fabrication , 2005 .

[3]  Ahmed Busnaina,et al.  Building highly organized single-walled-carbon-nanotube networks using template-guided fluidic assembly. , 2007, Small.

[4]  R. Williams,et al.  Nano/CMOS architectures using a field-programmable nanowire interconnect , 2007 .

[5]  裕幸 飯田,et al.  International Technology Roadmap for Semiconductors 2003の要求清浄度について - シリコンウエハ表面と雰囲気環境に要求される清浄度, 分析方法の現状について - , 2004 .

[6]  P. Narayanan,et al.  Heterogeneous Two-Level Logic and Its Density and Fault Tolerance Implications in Nanoscale Fabrics , 2009, IEEE Transactions on Nanotechnology.

[7]  Pritish Narayanan,et al.  Manufacturing pathway and associated challenges for nanoscale computational systems , 2009, 2009 9th IEEE Conference on Nanotechnology (IEEE-NANO).

[8]  Charles M. Lieber,et al.  Doping and Electrical Transport in Silicon Nanowires , 2000 .

[9]  Teng Wang,et al.  CMOS Control Enabled Single-Type FET NASIC , 2008, 2008 IEEE Computer Society Annual Symposium on VLSI.

[10]  Charles M Lieber,et al.  Semiconductor nanowires , 2006 .

[11]  Teng Wang,et al.  Combining 2-level logic families in grid-based nanoscale fabrics , 2007, 2007 IEEE International Symposium on Nanoscale Architectures.

[12]  A. Rinzler,et al.  An Integrated Logic Circuit Assembled on a Single Carbon Nanotube , 2006, Science.

[13]  Bozhi Tian,et al.  Controlled synthesis of millimeter-long silicon nanowires with uniform electronic properties. , 2008, Nano letters.

[14]  K. Roenker,et al.  Process Variation Study for Silicon Nanowire Transistors , 2007, 2007 IEEE Workshop on Microelectronics and Electron Devices.

[15]  Csaba Andras Moritz,et al.  Validating cascading of crossbar circuits with an integrated device-circuit exploration , 2009, 2009 IEEE/ACM International Symposium on Nanoscale Architectures.

[16]  Wei Lu,et al.  TOPICAL REVIEW: Semiconductor nanowires , 2006 .

[17]  Michael C. McAlpine,et al.  Development of ultra-high density silicon nanowire arrays for electronics applications , 2008 .

[18]  Dongmok Whang,et al.  Nanolithography Using Hierarchically Assembled Nanowire Masks , 2003 .

[19]  Teng Wang,et al.  Fault-Tolerant Nanoscale Processors on Semiconductor Nanowire Grids , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[20]  D. Frank,et al.  Discrete random dopant distribution effects in nanometer-scale MOSFETs , 1998 .

[21]  Csaba Andras Moritz,et al.  Wire-Streaming Processors on 2-D Nanowire Fabrics , 2005 .

[22]  Charles M. Lieber,et al.  Diameter-controlled synthesis of single-crystal silicon nanowires , 2001 .

[23]  S. Fonash,et al.  Self-assembling silicon nanowires for device applications using the nanochannel-guided "grow-in-place" approach. , 2008, ACS nano.

[24]  Wing Kam Liu,et al.  Dielectrophoretic assembly of nanowires. , 2006, The journal of physical chemistry. B.

[25]  Bernd Szyszka,et al.  Atomic Layer Deposition , 2011 .

[26]  Stoddart,et al.  Electronically configurable molecular-based logic gates , 1999, Science.

[27]  Ant Ural,et al.  Electric-field-aligned growth of single-walled carbon nanotubes on surfaces , 2002 .