Enhanced Mobility in InAlN/AlN/GaN HEMTs Using a GaN Interlayer

An enhancement of the electron mobility (<inline-formula> <tex-math notation="LaTeX">$\mu $ </tex-math></inline-formula>) in InAlN/AlN/GaN heterostructures is demonstrated by the incorporation of a thin GaN interlayer (IL) between the InAlN and AlN. The introduction of a GaN IL increases <inline-formula> <tex-math notation="LaTeX">$\mu $ </tex-math></inline-formula> at room temperature (RT) from 1600 to 1930 cm<sup>2</sup>/Vs. The effect is further enhanced at cryogenic temperature (5 K), where the GaN IL sample exhibits a <inline-formula> <tex-math notation="LaTeX">$\mu $ </tex-math></inline-formula> of 16000 cm<sup>2</sup>/Vs, compared to 6900 cm<sup>2</sup>/Vs without IL. The results indicate the reduction of one or more scattering mechanisms normally present in InAlN/AlN/GaN heterostructures. We propose that the improvement in <inline-formula> <tex-math notation="LaTeX">$\mu $ </tex-math></inline-formula> is either due to the suppression of fluctuations in the quantum well subband energies or to reduced Coulomb scattering, both related to compositional variations in the InAlN. HEMTs fabricated on the GaN IL sample demonstrate larger improvement in dc- and high-frequency performance at 5 K; <inline-formula> <tex-math notation="LaTeX">${f}_{\text {max}}$ </tex-math></inline-formula> increases by 25 GHz to 153 GHz, compared to an increase of 6 GHz to 133 GHz without IL. The difference in improvement was associated mainly with the drop in the access resistances.

[1]  Daniel Nilsson,et al.  Room-temperature mobility above 2200 cm2/V·s of two-dimensional electron gas in a sharp-interface AlGaN/GaN heterostructure , 2015 .

[2]  J. Carlin,et al.  AlInN-Based HEMTs for Large-Signal Operation at 40 GHz , 2013, IEEE Transactions on Electron Devices.

[3]  Ju Wu,et al.  Two-dimensional electron gas mobility limited by barrier and quantum well thickness fluctuations scattering in AlxGa1-xN/GaN multi-quantum wells , 2012 .

[4]  H. Zirath,et al.  Impact of Channel Thickness on the Large-Signal Performance in InAlGaN/AlN/GaN HEMTs With an AlGaN Back Barrier , 2019, IEEE Transactions on Electron Devices.

[5]  Y. Hao,et al.  Effects of AlN interlayer on the transport properties of nearly lattice-matched InAlN/GaN heterostructures grown on sapphire by pulsed metal organic chemical vapor deposition , 2012 .

[6]  Yu Cao,et al.  210-GHz InAlN/GaN HEMTs With Dielectric-Free Passivation , 2011, IEEE Electron Device Letters.

[7]  E. Janzén,et al.  Dispersive Effects in Microwave AlGaN/AlN/GaN HEMTs With Carbon-Doped Buffer , 2015, IEEE Transactions on Electron Devices.

[8]  P. Burke,et al.  GaN-based high-electron-mobility transistor structures with homogeneous lattice-matched InAlN barriers grown by plasma-assisted molecular beam epitaxy , 2014 .

[9]  U. Mishra,et al.  Contribution of alloy clustering to limiting the two-dimensional electron gas mobility in AlGaN/GaN and InAlN/GaN heterostructures: Theory and experiment , 2014 .

[10]  A Theoretical Calculation of the Impact of GaN Cap and Al x Ga 1−x N Barrier Thickness Fluctuations on Two-Dimensional Electron Gas in a GaN/Al x Ga 1−x N/GaN Heterostructure , 2011 .

[11]  Hervé Blanck,et al.  Electrical properties, microstructure, and thermal stability of Ta-based ohmic contacts annealed at low temperature for GaN HEMTs , 2011 .

[12]  E. Janzén,et al.  Performance Enhancement of Microwave GaN HEMTs Without an AlN-Exclusion Layer Using an Optimized AlGaN/GaN Interface Growth Process , 2016, IEEE Transactions on Electron Devices.

[13]  Martin Kuball,et al.  Subthreshold Mobility in AlGaN/GaN HEMTs , 2016, IEEE Transactions on Electron Devices.

[14]  Martin Kuball,et al.  Origin of kink effect in AlGaN/GaN high electron mobility transistors: Yellow luminescence and Fe doping , 2012 .

[15]  H. Yang,et al.  Unintentional incorporation of Ga in the nominal AlN spacer of AlInGaN/AlN/GaN Heterostructure , 2018 .

[16]  Debdeep Jena,et al.  Polarization Effects in Semiconductors: From Ab Initio Theory to Device Applications , 2007 .

[17]  G. Snider,et al.  Ultrascaled InAlN/GaN High Electron Mobility Transistors with Cutoff Frequency of 400 GHz , 2013 .

[18]  T. Suski,et al.  In-clustering induced anomalous behavior of band gap in InAlN and InGaN , 2010 .

[19]  N. Rorsman,et al.  Evaluation of Thermal Versus Plasma-Assisted ALD Al2O3 as Passivation for InAlN/AlN/GaN HEMTs , 2015, IEEE Electron Device Letters.

[20]  Dong Seup Lee,et al.  300-GHz InAlN/GaN HEMTs With InGaN Back Barrier , 2011, IEEE Electron Device Letters.

[21]  Eric Feltin,et al.  High electron mobility lattice-matched AlInN∕GaN field-effect transistor heterostructures , 2006 .

[22]  C. Gaquiere,et al.  AlInN/AlN/GaN HEMT Technology on SiC With 10-W/mm and 50% PAE at 10 GHz , 2010, IEEE Electron Device Letters.

[23]  Xiang Gao,et al.  ${\rm SiN}_{x}$ /InAlN/AlN/GaN MIS-HEMTs With 10.8 ${\rm THz}\cdot{\rm V}$ Johnson Figure of Merit , 2014, IEEE Electron Device Letters.

[24]  P. Komninou,et al.  Indium migration paths in V-defects of InAlN grown by metal-organic vapor phase epitaxy , 2009 .

[25]  A. Alt,et al.  Temperature Dependence of Annealed and Nonannealed HEMT Ohmic Contacts Between 5 and 350 K , 2013, IEEE Transactions on Electron Devices.

[26]  Fabrizio Roccaforte,et al.  Temperature dependence of the specific resistance in Ti∕Al∕Ni∕Au contacts on n-type GaN , 2006 .

[27]  W. Z. Zhou,et al.  Effects of GaN interlayer on the transport properties of lattice-matched AlInN/AlN/GaN heterostructures , 2015 .

[28]  Peter Kordos,et al.  Impact of layer structure on performance of unpassivated AlGaN/GaN HEMT , 2005, Microelectron. J..

[29]  Herbert Zirath,et al.  Accurate small-signal modeling of HFET's for millimeter-wave applications , 1996 .

[30]  Hadis Morkoç,et al.  Carrier velocity in InAlN/AlN/GaN heterostructure field effect transistors on Fe-doped bulk GaN substrates , 2010 .

[31]  N. Rorsman,et al.  Low resistive Au-free, Ta-based, recessed ohmic contacts to InAlN/AlN/GaN heterostructures , 2015 .

[32]  Xiaoyan Wang,et al.  The influence of 1 nm AlN interlayer on properties of the Al0.3Ga0.7N/AlN/GaN HEMT structure , 2008, Microelectron. J..

[33]  D. Jena,et al.  Polarization-mediated remote surface roughness scattering in ultrathin barrier GaN high-electron mobility transistors , 2010 .

[34]  Lin-An Yang,et al.  High quality InAlN/GaN heterostructures grown on sapphire by pulsed metal organic chemical vapor deposition , 2011 .

[35]  O. Brandt,et al.  (Al,In)N layers and (Al,In)N/GaN heterostructures grown by plasma-assisted molecular beam epitaxy on 6H-SiC(0001) , 2008 .

[36]  Hadis Morkoç,et al.  High electron mobility in nearly lattice-matched AlInN∕AlN∕GaN heterostructure field effect transistors , 2007 .

[37]  Yue Hao,et al.  Improved Interface and Transport Properties of AlGaN/GaN MIS-HEMTs With PEALD-Grown AlN Gate Dielectric , 2015, IEEE Transactions on Electron Devices.