Optimizing Material Removal Rate Using Artificial Neural Network for Micro-EDM

[1]  Akira Okada,et al.  Improvement in Surface Characteristics by EDM with Chromium Powder Mixed Fluid , 2016 .

[2]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[3]  T. Nagarajan,et al.  A Review of Micro-EDM , 2010 .

[4]  Muhammad P. Jahan,et al.  Micro-Electrical Discharge Machining , 2013 .

[5]  Kuang-Yuan Kung,et al.  Material removal rate and electrode wear ratio study on the powder mixed electrical discharge machining of cobalt-bonded tungsten carbide , 2009 .

[6]  Takahisa Masuzawa,et al.  State of the Art of Micromachining , 2000 .

[7]  U. Natarajan,et al.  Prediction of quality responses in micro-EDM process using an adaptive neuro-fuzzy inference system (ANFIS) model , 2013 .

[8]  Jose Mathew,et al.  Optimization of Material Removal Rate in Micro-EDM Using Artificial Neural Network and Genetic Algorithms , 2010 .

[9]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[10]  Surjya K. Pal,et al.  Modeling of electrical discharge machining process using back propagation neural network and multi-objective optimization using non-dominating sorting genetic algorithm-II , 2007 .

[11]  Pallavi Chaudhury,et al.  Multi Response Optimization of Powder Additive Mixed Electrical Discharge Machining by Taguchi Analysis , 2017 .

[12]  Y. Wong,et al.  An experimental investigation into the micro-electro-discharge machining behaviour of aluminium alloy (AA 2024) , 2015 .

[13]  V. N. Gaitonde,et al.  Minimizing burr size in drilling using artificial neural network (ANN)-particle swarm optimization (PSO) approach , 2012, J. Intell. Manuf..

[14]  G. S. Prihandana,et al.  Improvement of machining time in micro-EDM with workpiece vibration and graphite powder mixed in dielectric fluid , 2012 .

[15]  V. Yadava,et al.  ANN MODELLING FOR THE PREDICTION OF MATERIAL REMOVAL RATE AND MACHINED HOLE OVERCUT IN HOLE DRILLING ELECTRO DISCHARGE MICRO MACHINING , 2012 .

[16]  M. Ali,et al.  Micro-electro discharge machining of non-conductive zirconia ceramic: investigation of MRR and recast layer hardness , 2014 .

[17]  Pei-Jen Wang,et al.  Comparisons of neural network models on material removal rate in electrical discharge machining , 2001 .

[18]  A. Khan,et al.  Improving micro-hardness of stainless steel through powder-mixed electrical discharge machining , 2014 .

[19]  Arindam Majumder Comparative study of three evolutionary algorithms coupled with neural network model for optimization of electric discharge machining process parameters , 2015 .

[20]  Yih-fong Tzeng,et al.  Effects of Powder Characteristics on Electrodischarge Machining Efficiency , 2001 .

[21]  D. Tripathy,et al.  Surface Characterization and Multi-response optimization of EDM process parameters using powder mixed dielectric , 2017 .

[22]  Pedro Paulo Balestrassi,et al.  Artificial neural networks for machining processes surface roughness modeling , 2010 .

[23]  Chunmei Wang,et al.  Analysis of mechanism based on two types of pulse generators in micro-EDM using single pulse discharge , 2017 .

[24]  Franci Cus,et al.  Approach to optimization of cutting conditions by using artificial neural networks , 2006 .

[25]  B. K. Vinayagam,et al.  Adaptive neuro fuzzy inference system modelling of multi-objective optimisation of electrical discharge machining process using single-wall carbon nanotubes , 2015 .

[26]  Sangkee Min,et al.  Recent Advances in Mechanical Micromachining , 2006 .

[27]  Mahmudur Rahman Modeling of machining parameters of Ti-6Al-4V for electric discharge machining: A neural network approach , 2012 .

[28]  Pei-Jen Wang,et al.  Predictions on surface finish in electrical discharge machining based upon neural network models , 2001 .

[29]  C. Biswas,et al.  Influence of graphite powder mixed EDM on the surface integrity characteristics of Inconel 625 , 2017 .

[30]  Mohan Kumar Pradhan,et al.  Neuro-fuzzy and neural network-based prediction of various responses in electrical discharge machining of AISI D2 steel , 2010 .

[31]  Uday S. Dixit,et al.  Application of soft computing techniques in machining performance prediction and optimization: a literature review , 2010 .

[32]  R. K. Bhoi,et al.  Artificial Neural Network Prediction of Material Removal Rate in Electro Discharge Machining , 2005 .

[33]  S. Agarwal,et al.  Experimental investigation into the micro-EDM characteristics of conductive SiC , 2016 .

[34]  David W. Coit,et al.  STATIC NEURAL NETWORK PROCESS MODELS : CONSIDERATIONS AND CASE STUDIES , 1998 .

[35]  S. S. Pande,et al.  Development of an intelligent process model for EDM , 2009 .

[36]  S. Laroiya,et al.  Multiobjective Optimization of Electrical Discharge Machining Process Using a Hybrid Method , 2013 .

[37]  Stephen T. Newman,et al.  State of the art electrical discharge machining (EDM) , 2003 .