Gold nanoparticles have shown great promise as therapeutics, therapeutic delivery vectors, and intracellular imaging agents. For many biomedical applications, selective cell and nuclear targeting are desirable, and these remain a significant practical challenge in the use of nanoparticles in vivo. This challenge is being addressed by the incorporation of cell-targeting peptides or antibodies onto the nanoparticle surface, modifications that frequently compromise nanoparticle stability in high ionic strength biological media. We describe herein the assembly of poly(ethylene glycol) (PEG) and mixed peptide/PEG monolayers on gold nanoparticle surfaces. The stability of the resulting bioconjugates in high ionic strength media was characterized as a function of nanoparticle size, PEG length, and monolayer composition. In total, three different thiol-modified PEGs (average molecular weight (MW), 900, 1500, and 5000 g mol-1), four particle diameters (10, 20, 30, and 60 nm), and two cell-targeting peptides were explored. We found that nanoparticle stability increased with increasing PEG length, decreasing nanoparticle diameter, and increasing PEG mole fraction. The order of assembly also played a role in nanoparticle stability. Mixed monolayers prepared via the sequential addition of PEG followed by peptide were more stable than particles prepared via simultaneous co-adsorption. Finally, the ability of nanoparticles modified with mixed PEG/RME (RME = receptor-mediated endocytosis) peptide monolayers to target the cytoplasm of HeLa cells was quantified using inductively coupled plasma optical emission spectrometry (ICP-OES). Although it was anticipated that the MW 5000 g mol-1 PEG would sterically block peptides from access to the cell membrane compared to the MW 900 PEG, nanoparticles modified with mixed peptide/PEG 5000 monolayers were internalized as efficiently as nanoparticles containing mixed peptide/PEG 900 monolayers. These studies can provide useful cues in the assembly of stable peptide/gold nanoparticle bioconjugates capable of being internalized into cells.