Parallel eigenvalue calculation based on multiple shift-invert Lanczos and contour integral based spectral projection method

[1]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[2]  J. Sylvester XIX. A demonstration of the theorem that every homogeneous quadratic polynomial is reducible by real orthogonal substitutions to the form of a sum of positive and negative squares , 1852 .

[3]  A. George Nested Dissection of a Regular Finite Element Mesh , 1973 .

[4]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[5]  Axel Ruhe Rational Krylov sequence methods for eigenvalue computation , 1984 .

[6]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[7]  R. Freund,et al.  QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .

[8]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[9]  Danny C. Sorensen,et al.  Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..

[10]  Y. PÐ1Þ,et al.  PARPACK: An Efficient Portable Large Scale Eigenvalue Package for Distributed Memory Parallel Architectures , 1996 .

[11]  A. Stathopoulos,et al.  Solution of large eigenvalue problems in electronic structure calculations , 1996 .

[12]  B. Fischer Polynomial Based Iteration Methods for Symmetric Linear Systems , 1996 .

[13]  Danny C. Sorensen,et al.  P_ARPACK: An Efficient Portable Large Scale Eigenvalue Package for Distributed Memory Parallel Architectures , 1996, PARA.

[14]  Jack Dongarra,et al.  ScaLAPACK user's guide , 1997 .

[15]  G. Stewart Afternotes goes to graduate school : lectures on advanced numerical analysis : a series of lectures on advanced numerical analysis presented at the University of Maryland at College Park and recorded after the fact , 1998 .

[16]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[17]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[18]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[19]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[20]  David R. Bowler,et al.  Parallel sparse matrix multiplication for linear scaling electronic structure calculations , 2001 .

[21]  T. Sakurai,et al.  A projection method for generalized eigenvalue problems , 2002 .

[22]  T. Sakurai,et al.  A projection method for generalized eigenvalue problems using numerical integration , 2003 .

[23]  Y. Saad,et al.  PARSEC – the pseudopotential algorithm for real‐space electronic structure calculations: recent advances and novel applications to nano‐structures , 2006 .

[24]  Merico E. Argentati,et al.  Block Locally Optimal Preconditioned Eigenvalue Xolvers (BLOPEX) in hypre and PETSc , 2007, SIAM J. Sci. Comput..

[25]  Michael Sternberg,et al.  SIPs: Shift-and-invert parallel spectral transformations , 2007, TOMS.

[26]  Andrzej Bajer Mode-Based Frequency Response Analysis With Frequency-Dependent Material Properties , 2008 .

[27]  Mitsuhisa Sato,et al.  A parallel method for large sparse generalized eigenvalue problems using a GridRPC system , 2008, Future Gener. Comput. Syst..

[28]  Richard B. Lehoucq,et al.  Anasazi software for the numerical solution of large-scale eigenvalue problems , 2009, TOMS.

[29]  Eric Polizzi,et al.  A Density Matrix-based Algorithm for Solving Eigenvalue Problems , 2009, ArXiv.

[30]  Andreas Stathopoulos,et al.  PRIMME: preconditioned iterative multimethod eigensolver—methods and software description , 2010, TOMS.

[31]  F. Chatelin Spectral approximation of linear operators , 2011 .

[32]  Yousef Saad,et al.  A spectrum slicing method for the Kohn-Sham problem , 2012, Comput. Phys. Commun..

[33]  Eric Polizzi,et al.  FEAST fundamental framework for electronic structure calculations: Reformulation and solution of the muffin-tin problem , 2011, Comput. Phys. Commun..

[34]  E Weinan,et al.  Adaptive local basis set for Kohn-Sham density functional theory in a discontinuous Galerkin framework I: Total energy calculation , 2011, J. Comput. Phys..

[35]  Matt Challacombe,et al.  An Optimized Sparse Approximate Matrix Multiply , 2012, ArXiv.

[36]  Tetsuya Sakurai,et al.  Performance comparison of parallel eigensolvers based on a contour integral method and a Lanczos method , 2013, Parallel Comput..

[37]  Lukas Krämer,et al.  Dissecting the FEAST algorithm for generalized eigenproblems , 2012, J. Comput. Appl. Math..

[38]  Yousef Saad,et al.  Approximating Spectral Densities of Large Matrices , 2013, SIAM Rev..

[39]  Chao Yang,et al.  Trace-Penalty Minimization for Large-Scale Eigenspace Computation , 2016, J. Sci. Comput..