Lower Bounds for Constant-Depth Circuits in the Presence of Help Bits
暂无分享,去创建一个
[1] Roman Smolensky,et al. Algebraic methods in the theory of lower bounds for Boolean circuit complexity , 1987, STOC.
[2] Miklós Ajtai,et al. ∑11-Formulae on finite structures , 1983, Ann. Pure Appl. Log..
[3] Johan Håstad,et al. Almost optimal lower bounds for small depth circuits , 1986, STOC '86.
[4] Andrew Chi-Chih Yao,et al. Separating the Polynomial-Time Hierarchy by Oracles (Preliminary Version) , 1985, FOCS.
[5] Juris Hartmanis,et al. The Boolean Hierarchy II: Applications , 1989, SIAM J. Comput..
[6] Jim Kadin. The polynomial time hierarchy collapses if the Boolean hierarchy collapses , 1988, [1988] Proceedings. Structure in Complexity Theory Third Annual Conference.
[7] A. Razborov. Lower bounds on the size of bounded depth circuits over a complete basis with logical addition , 1987 .
[8] Juris Hartmanis,et al. The Boolean Hierarchy I: Structural Properties , 1988, SIAM J. Comput..
[9] Amihood Amir,et al. Polynomial Terse Sets , 1988, Inf. Comput..
[10] Jin-Yi Cai,et al. With probability one, a random oracle separates PSPACE from the polynomial-time hierarchy , 1986, STOC '86.
[11] Larry J. Stockmeyer,et al. The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..
[12] John Gill,et al. Relative to a Random Oracle A, PA != NPA != co-NPA with Probability 1 , 1981, SIAM J. Comput..