Atomically localized plasmon enhancement in monolayer graphene.
暂无分享,去创建一个
Jagjit Nanda | S. Pennycook | S. Pantelides | J. Nanda | J. Idrobo | Jaekwang Lee | Juan-Carlos Idrobo | Jaekwang Lee | Stephen J Pennycook | Sokrates T Pantelides | Wu Zhou | Wu Zhou
[1] Nader Engheta,et al. Transformation Optics Using Graphene , 2011, Science.
[2] Xiang Zhang,et al. A graphene-based broadband optical modulator , 2011, Nature.
[3] F. Koppens,et al. Graphene plasmonics: a platform for strong light-matter interactions. , 2011, Nano letters.
[4] Steven G. Louie,et al. Controlling inelastic light scattering quantum pathways in graphene , 2011, Nature.
[5] Li Yang. Excitons in intrinsic and bilayer graphene , 2011 .
[6] M. Stockman. Nanoplasmonics: The physics behind the applications , 2011 .
[7] A. Ferrari,et al. Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.
[8] Reza Asgari,et al. Observation of Plasmarons in Quasi-Freestanding Doped Graphene , 2010, Science.
[9] S. Haas,et al. Impurity-assisted nanoscale localization of plasmonic excitations in graphene , 2010, 1003.5955.
[10] P. Solomon,et al. It’s Time to Reinvent the Transistor! , 2010, Science.
[11] S. Pennycook,et al. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy , 2010, Nature.
[12] Tapash Chakraborty,et al. Properties of graphene: a theoretical perspective , 2010, 1003.0391.
[13] A. Shytov,et al. Guided plasmons in graphene p-n junctions. , 2009, Physical review letters.
[14] H. John,et al. Why future supercomputing requires optics , 2010 .
[15] M. Soljavci'c,et al. Plasmonics in graphene at infrared frequencies , 2009, 0910.2549.
[16] SUPARNA DUTTASINHA,et al. Graphene: Status and Prospects , 2009, Science.
[17] S. Louie,et al. Excitonic effects on the optical response of graphene and bilayer graphene. , 2009, Physical review letters.
[18] Ahmed Y. Mahfouz,et al. THEORETICAL PERSPECTIVE , 2001 .
[19] A. Bleloch,et al. Free-standing graphene at atomic resolution. , 2008, Nature nanotechnology.
[20] Yang Wu,et al. Measurement of the optical conductivity of graphene. , 2008, Physical review letters.
[21] Feng Wang,et al. Gate-Variable Optical Transitions in Graphene , 2008, Science.
[22] L. Liz‐Marzán,et al. Mapping surface plasmons on a single metallic nanoparticle , 2007 .
[23] Masashi Watanabe,et al. Mapping surface plasmons at the nanometre scale with an electron beam , 2007 .
[24] E. Ozbay. Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.
[25] S. Maier,et al. Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures , 2005 .
[26] J. Seiber. Status and Prospects , 2005 .
[27] Andre K. Geim,et al. Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.
[28] C. Berger,et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. , 2004, cond-mat/0410240.
[29] W. Barnes,et al. Surface plasmon subwavelength optics , 2003, Nature.
[30] Andrea S. Taylor,et al. A Theoretical Perspective , 2000 .
[31] M F Crommie,et al. Confinement of Electrons to Quantum Corrals on a Metal Surface , 1993, Science.
[32] N. Collings. Optical computer architectures: The application of optical concepts to next generation computers: By Alastair D. McAulay. John Wiley & Sons Ltd. Chichester, UK, 1991. Hardback, ISBN 0-471-63242-2, 531 pp. Price: £47.50. , 1992 .
[33] David B. Williams,et al. Electron energy-loss spectrum-imaging , 1991 .
[34] Alastair D. McAulay. Optical Computer Architectures: The Application of Optical Concepts to Next Generation Computers , 1991 .
[35] T. W. Halstead,et al. Status and Prospects , 1984 .