Atomically localized plasmon enhancement in monolayer graphene.

[1]  Nader Engheta,et al.  Transformation Optics Using Graphene , 2011, Science.

[2]  Xiang Zhang,et al.  A graphene-based broadband optical modulator , 2011, Nature.

[3]  F. Koppens,et al.  Graphene plasmonics: a platform for strong light-matter interactions. , 2011, Nano letters.

[4]  Steven G. Louie,et al.  Controlling inelastic light scattering quantum pathways in graphene , 2011, Nature.

[5]  Li Yang Excitons in intrinsic and bilayer graphene , 2011 .

[6]  M. Stockman Nanoplasmonics: The physics behind the applications , 2011 .

[7]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[8]  Reza Asgari,et al.  Observation of Plasmarons in Quasi-Freestanding Doped Graphene , 2010, Science.

[9]  S. Haas,et al.  Impurity-assisted nanoscale localization of plasmonic excitations in graphene , 2010, 1003.5955.

[10]  P. Solomon,et al.  It’s Time to Reinvent the Transistor! , 2010, Science.

[11]  S. Pennycook,et al.  Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy , 2010, Nature.

[12]  Tapash Chakraborty,et al.  Properties of graphene: a theoretical perspective , 2010, 1003.0391.

[13]  A. Shytov,et al.  Guided plasmons in graphene p-n junctions. , 2009, Physical review letters.

[14]  H. John,et al.  Why future supercomputing requires optics , 2010 .

[15]  M. Soljavci'c,et al.  Plasmonics in graphene at infrared frequencies , 2009, 0910.2549.

[16]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[17]  S. Louie,et al.  Excitonic effects on the optical response of graphene and bilayer graphene. , 2009, Physical review letters.

[18]  Ahmed Y. Mahfouz,et al.  THEORETICAL PERSPECTIVE , 2001 .

[19]  A. Bleloch,et al.  Free-standing graphene at atomic resolution. , 2008, Nature nanotechnology.

[20]  Yang Wu,et al.  Measurement of the optical conductivity of graphene. , 2008, Physical review letters.

[21]  Feng Wang,et al.  Gate-Variable Optical Transitions in Graphene , 2008, Science.

[22]  L. Liz‐Marzán,et al.  Mapping surface plasmons on a single metallic nanoparticle , 2007 .

[23]  Masashi Watanabe,et al.  Mapping surface plasmons at the nanometre scale with an electron beam , 2007 .

[24]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[25]  S. Maier,et al.  Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures , 2005 .

[26]  J. Seiber Status and Prospects , 2005 .

[27]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[28]  C. Berger,et al.  Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. , 2004, cond-mat/0410240.

[29]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[30]  Andrea S. Taylor,et al.  A Theoretical Perspective , 2000 .

[31]  M F Crommie,et al.  Confinement of Electrons to Quantum Corrals on a Metal Surface , 1993, Science.

[32]  N. Collings Optical computer architectures: The application of optical concepts to next generation computers: By Alastair D. McAulay. John Wiley & Sons Ltd. Chichester, UK, 1991. Hardback, ISBN 0-471-63242-2, 531 pp. Price: £47.50. , 1992 .

[33]  David B. Williams,et al.  Electron energy-loss spectrum-imaging , 1991 .

[34]  Alastair D. McAulay Optical Computer Architectures: The Application of Optical Concepts to Next Generation Computers , 1991 .

[35]  T. W. Halstead,et al.  Status and Prospects , 1984 .