Fuzzy preorders: conditional extensions, extensions and their representations

The crisp literature provides characterizations of the preorders that admit a total preorder extension when some pairwise order comparisons are imposed on the extended relation. It is also known that every preorder is the intersection of a collection of total preorders. In this contribution we generalize both approaches to the fuzzy case. We appeal to a construction for deriving the strict preference and the indifference relations from a weak preference relation, that allows to obtain full characterizations in the conditional extension problem. This improves the performance of the construction via generators studied earlier.

[1]  E. Szpilrajn Sur l'extension de l'ordre partiel , 1930 .

[2]  Irina Georgescu Fuzzy Choice Functions - A Revealed Preference Approach , 2007, Studies in Fuzziness and Soft Computing.

[3]  Bernard De Baets,et al.  On the compositional characterization of complete fuzzy pre-orders , 2008, Fuzzy Sets Syst..

[4]  Radim Bělohlávek,et al.  Fuzzy Relational Systems: Foundations and Principles , 2002 .

[5]  Lotfi A. Zadeh,et al.  Similarity relations and fuzzy orderings , 1971, Inf. Sci..

[6]  R. Belohlávek Fuzzy Relational Systems: Foundations and Principles , 2002 .

[7]  L. A. Goodman,et al.  Social Choice and Individual Values , 1951 .

[8]  M. Dasgupta,et al.  Factoring fuzzy transitivity , 2001, Fuzzy Sets Syst..

[9]  J. Weymark,et al.  A Quasiordering Is the Intersection of Orderings , 1998 .

[10]  Walter Bossert,et al.  Intersection Quasi-Orderings: An Alternative Proof , 1999, Order.

[11]  Frank Klawonn,et al.  A formal study of linearity axioms for fuzzy orderings , 2004, Fuzzy Sets Syst..

[12]  B. Hansson Choice structures and preference relations , 1968, Synthese.

[13]  Bernard De Baets,et al.  General results on the decomposition of transitive fuzzy relations , 2010, Fuzzy Optim. Decis. Mak..

[14]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[15]  Irina Georgescu,et al.  Fuzzy Szpilrajn Theorem through Indicators , 2008, Int. J. Comput. Commun. Control.

[16]  Ulrich Höhle,et al.  Partial ordering in L-underdeterminate sets , 1985, Inf. Sci..

[17]  Susana Díaz,et al.  Conditional extensions of fuzzy preorders , 2015, Fuzzy Sets Syst..

[18]  Compatible extensions of fuzzy relations , 2003 .

[19]  Siegfried Gottwald,et al.  Fuzzy Sets and Fuzzy Logic , 1993 .

[20]  Ben Dushnik,et al.  Partially Ordered Sets , 1941 .

[21]  J. Alcantud Conditional ordering extensions , 2009 .