A new conservative finite-difference scheme for anisotropic elliptic problems in bounded domain
暂无分享,去创建一个
Jacques Liandrat | Patrick Tamain | Eric Serre | Frédéric Schwander | G. Giorgiani | J. A. Soler | G. Giorgiani | J. Liandrat | P. Tamain | F. Schwander | E. Serre | J. A. Soler
[1] M. Ottaviani,et al. A flux-coordinate independent field-aligned approach to plasma turbulence simulations , 2013, Comput. Phys. Commun..
[2] Timothy A. Davis,et al. Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.
[3] S. Hamada,et al. Hydromagnetic equilibria and their proper coordinates , 1962 .
[4] Bill Scott,et al. Shifted metric procedure for flux tube treatments of toroidal geometry: Avoiding grid deformation , 2001 .
[5] R. Sudan,et al. Considerations of ion‐temperature‐gradient‐driven turbulence , 1991 .
[6] K. V. Roberts,et al. Gravitational Resistive Instability of an Incompressible Plasma in a Sheared Magnetic Field , 1965 .
[7] Prateek Sharma,et al. Preserving monotonicity in anisotropic diffusion , 2007, J. Comput. Phys..
[8] Karl Lackner,et al. The field line map approach for simulations of magnetically confined plasmas , 2015, Comput. Phys. Commun..
[9] Gianmarco Manzini,et al. Mimetic finite difference method , 2014, J. Comput. Phys..
[10] I. Babuska,et al. On locking and robustness in the finite element method , 1992 .
[11] Guido Ciraolo,et al. The TOKAM3X code for edge turbulence fluid simulations of tokamak plasmas in versatile magnetic geometries , 2016, J. Comput. Phys..
[12] Barry Koren,et al. Finite-difference schemes for anisotropic diffusion , 2014, J. Comput. Phys..
[13] M. Shashkov,et al. A discrete operator calculus for finite difference approximations , 2000 .
[14] L Chacón,et al. Local and nonlocal parallel heat transport in general magnetic fields. , 2010, Physical review letters.
[15] Cory D. Hauck,et al. An asymptotic-preserving semi-Lagrangian algorithm for the time-dependent anisotropic heat transport equation , 2014, J. Comput. Phys..
[16] C. E. SHANNON,et al. A mathematical theory of communication , 1948, MOCO.
[17] M. Shashkov,et al. A Local Support-Operators Diffusion Discretization Scheme for Quadrilateralr-zMeshes , 1998 .
[18] Mikhail Shashkov,et al. Approximation of boundary conditions for mimetic finite-difference methods , 1998 .
[19] A. Arakawa. Computational design for long-term numerical integration of the equations of fluid motion: two-dimen , 1997 .
[20] Claudia Negulescu,et al. Asymptotic-preserving scheme for highly anisotropic non-linear diffusion equations , 2012, J. Comput. Phys..
[21] M. V. Umansky,et al. On Numerical Solution of Strongly Anisotropic Diffusion Equation on Misaligned Grids , 2005 .
[22] Len G. Margolin,et al. Finite volume methods and the equations of finite scale: A mimetic approach , 2008 .
[23] M. Ottaviani,et al. An alternative approach to field-aligned coordinates for plasma turbulence simulations , 2010, 1002.0748.
[24] M. Shashkov,et al. Support-operator finite-difference algorithms for general elliptic problems , 1995 .
[25] Robert Dewar,et al. Ballooning mode spectrum in general toroidal systems , 1983 .
[26] Virginie Grandgirard,et al. 3D modelling of edge parallel flow asymmetries , 2009 .
[27] William Dorland,et al. Developments in the gyrofluid approach to Tokamak turbulence simulations , 1993 .
[28] Sibylle Günter,et al. Modelling of heat transport in magnetised plasmas using non-aligned coordinates , 2005 .
[29] Markus Held,et al. Advances in the flux-coordinate independent approach , 2017, Comput. Phys. Commun..