High resolution genetic mapping uncovers chitin synthase-1 as the target-site of the structurally diverse mite growth inhibitors clofentezine, hexythiazox and etoxazole in Tetranychus urticae.

[1]  T. Van Leeuwen,et al.  The ABC gene family in arthropods: comparative genomics and role in insecticide transport and resistance. , 2014, Insect biochemistry and molecular biology.

[2]  Frauke Meyer,et al.  The sulfonylurea receptor Sur is dispensable for chitin synthesis in Drosophila melanogaster embryos. , 2013, Pest management science.

[3]  Mauricio O. Carneiro,et al.  From FastQ Data to High‐Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline , 2013, Current protocols in bioinformatics.

[4]  Peter Jeschke,et al.  Nicotinic acetylcholine receptor agonists: a milestone for modern crop protection. , 2013, Angewandte Chemie.

[5]  R. Nauen,et al.  Molecular analysis of resistance to acaricidal spirocyclic tetronic acids in Tetranychus urticae: CYP392E10 metabolizes spirodiclofen, but not its corresponding enol. , 2013, Insect biochemistry and molecular biology.

[6]  H. Merzendorfer Chitin synthesis inhibitors: old molecules and new developments , 2013, Insect science.

[7]  L. Tirry,et al.  Spider mite control and resistance management: does a genome help? , 2013, Pest management science.

[8]  Richard M. Clark,et al.  A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae , 2012, Proceedings of the National Academy of Sciences.

[9]  F. Legeai,et al.  Genome scans reveal candidate regions involved in the adaptation to host plant in the pea aphid complex , 2012, Molecular ecology.

[10]  M. Riga,et al.  The cys-loop ligand-gated ion channel gene family of Tetranychus urticae: implications for acaricide toxicology and a novel mutation associated with abamectin resistance. , 2012, Insect biochemistry and molecular biology.

[11]  D. Marčić Acaricides in modern management of plant-feeding mites , 2012, Journal of Pest Science.

[12]  Richard M. Clark,et al.  Population bulk segregant mapping uncovers resistance mutations and the mode of action of a chitin synthesis inhibitor in arthropods , 2012, Proceedings of the National Academy of Sciences.

[13]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[14]  R. Nauen,et al.  IRAC: Insecticide Resistance, and Mode of Action Classification of Insecticides , 2012 .

[15]  P. Weintraub,et al.  Mites (Acari) as a factor in greenhouse management. , 2012, Annual review of entomology.

[16]  Stefan R. Henz,et al.  The genome of Tetranychus urticae reveals herbivorous pest adaptations , 2011, Nature.

[17]  L. Tirry,et al.  Acaricide resistance and resistance mechanisms in Tetranychus urticae populations from rose greenhouses in the Netherlands. , 2011, Pest management science.

[18]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[19]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[20]  L. Tirry,et al.  Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: a review. , 2010, Insect biochemistry and molecular biology.

[21]  H. Merzendorfer,et al.  A Novel Role of the Yeast CaaX Protease Ste24 in Chitin Synthesis , 2010, Molecular biology of the cell.

[22]  F. Matsumura Studies on the action mechanism of benzoylurea insecticides to inhibit the process of chitin synthesis in insects: A review on the status of research activities in the past, the present and the future prospects , 2010 .

[23]  Y. Kikuchi,et al.  Synthesis and Activity of Novel Acaricidal / Insecticidal 2 , 4-Diphenyl-1 , 3-oxazolines , 2010 .

[24]  A. Migeon,et al.  Spider Mites Web: A comprehensive database for the Tetranychidae , 2010 .

[25]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[26]  L. Tirry,et al.  Genetic and biochemical analysis of a laboratory-selected spirodiclofen-resistant strain of Tetranychus urticae Koch (Acari: Tetranychidae). , 2009, Pest management science.

[27]  B. Vanholme,et al.  Mutations in the mitochondrial cytochrome b of Tetranychus urticae Koch (Acari: Tetranychidae) confer cross-resistance between bifenazate and acequinocyl. , 2009, Pest management science.

[28]  G. Papadoulis,et al.  Biological Control of Insect and Mite Pests in Greenhouse Solanaceous Crops , 2009 .

[29]  Nancy F. Hansen,et al.  Accurate Whole Human Genome Sequencing using Reversible Terminator Chemistry , 2008, Nature.

[30]  R. Uesugi,et al.  Linkage Between One of the Polygenic Hexythiazox Resistance Genes and an Etoxazole Resistance Gene in the Twospotted Spider Mite (Acari: Tetranychidae) , 2008, Journal of economic entomology.

[31]  R. Nauen,et al.  Mitochondrial heteroplasmy and the evolution of insecticide resistance: Non-Mendelian inheritance in action , 2008, Proceedings of the National Academy of Sciences.

[32]  May R Berenbaum,et al.  Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. , 2007, Annual review of entomology.

[33]  R. Nauen,et al.  Complete maternal inheritance of bifenazate resistance in Tetranychus urticae Koch (Acari: Tetranychidae) and its implications in mode of action considerations. , 2006, Insect biochemistry and molecular biology.

[34]  M. Hoy Mites of Greenhouses, Identification, Biology and Control , 2006 .

[35]  R. Nauen,et al.  Mode of action of etoxazole. , 2006, Pest management science.

[36]  Michael E. Beck,et al.  Do Fukui Function Maxima Relate to Sites of Metabolism? A Critical Case Study , 2005, J. Chem. Inf. Model..

[37]  M. Dekeyser Acaricide mode of action. , 2005, Pest management science.

[38]  W. Thwaite Resistance to clofentezine and hexythiazox inPanonychus ulmi from apples in Australia , 1991, Experimental & Applied Acarology.

[39]  C. Aveyard,et al.  Biological activity of clofentezine against egg and motile stages of tetranychid mites , 1986, Experimental & Applied Acarology.

[40]  H. Merzendorfer,et al.  Insect chitin synthases: a review , 2005, Journal of Comparative Physiology B.

[41]  Sang Sun Yoo,et al.  Comparative toxicity of some acaricides to the predatory mite, Phytoseiulus persimilis and the twospotted spider mite, Tetranychus urticae , 2002, BioControl.

[42]  R. Wixley,et al.  Cross-resistance between flucycloxuron, clofentezine and hexythiazox in Panonychus ulmi (fruit tree red spider mite) , 1994, Experimental & Applied Acarology.

[43]  G. Herron,et al.  Clofentezine and hexythiazox resistance in Tetranychus urticae Koch in Australia , 1993, Experimental & Applied Acarology.

[44]  L. Tirry,et al.  Genetic analysis and cross-resistance spectrum of a laboratory-selected chlorfenapyr resistant strain of two-spotted spider mite (Acari: Tetranychidae) , 2004, Experimental & Applied Acarology.

[45]  K. Goka,et al.  Genetic Basis of Resistances to Chlorfenapyr and Etoxazole in the Two-Spotted Spider Mite (Acari: Tetranychidae) , 2002, Journal of economic entomology.

[46]  達也 石田,et al.  新規な 2,4-diphenyl-1,3-oxazoline 類の合成と活性 , 2002 .

[47]  R. Butlin,et al.  The genetic basis of host plant adaptation in the brown planthopper (Nilaparvata lugens) , 1998, Heredity.

[48]  L. Pap,et al.  Biological evaluation of SZI‐121, a new miticide , 1996 .

[49]  A. Yamamoto,et al.  Stability of hexythiazox resistance in the citrus red mite, Panonychus citri (MCGREGOR) under Laboratory and field conditions , 1996 .

[50]  A. Yamamoto,et al.  Genetic analysis of hexythiazox resistance in the citrus red mite, Panonychus citri (McGregor) , 1995 .

[51]  A. Yamamoto,et al.  Laboratory selections of populations in the citrus red mite, Panonychus citri (McGREGOR), with hexythiazox and their cross resistance spectrum , 1995 .

[52]  A. Yamamoto,et al.  Influence of hexythiazox resistance on life history parameters in the citrus red mite, Panonychus citri (McGREGOR) , 1995 .

[53]  I. Kasahara,et al.  Development of a New Miticide, Hexythiazox , 1994 .

[54]  Y. Mori,et al.  YI-5301, a novel oxazoline acaricide , 1994 .

[55]  S. Via,et al.  Ecological genetics and host adaptation in herbivorous insects: the experimental study of evolution in natural and agricultural systems. , 1990, Annual review of entomology.

[56]  J. W. Neal,et al.  Toxicity of clofentezine against the twospotted and carmine spider mites (Acari: Tetranychidae) , 1986 .

[57]  M. Sabelis Biological control of two-spotted spider mites using phytoseiid predators , 1981 .

[58]  F. Gould RAPID HOST RANGE EVOLUTION IN A POPULATION OF THE PHYTOPHAGOUS MITE TETRANYCHUS URTICAE KOCH , 1979, Evolution; international journal of organic evolution.

[59]  Edward W. Baker,et al.  AGS volume 84 issue 1 Cover and Back matter , 1975, The Journal of Agricultural Science.

[60]  W. Helle,et al.  LINKAGE STUDIES IN THE PACIFIC SPIDER MITE TETRANYCHUS PACIFICUS II. GENES FOR WHITE EYEII, LEMON AND FLAMINGO , 1970 .

[61]  G. Georghiou Parasitological review. Genetics of resistance to insecticides in houseflies and mosquitoes. , 1969, Experimental parasitology.

[62]  Stone Bf A formula for determining degree of dominance in cases of monofactorial inheritance of resistance to chemicals. , 1968 .

[63]  B. F. Stone A formula for determining degree of dominance in cases of monofactorial inheritance of resistance to chemicals. , 1968, Bulletin of the World Health Organization.