Homogeneous Precipitation of TiO2 Ultrafine Powders from Aqueous TiOCl2 Solution

Crystalline TiO2 powders were prepared by the homogeneous precipitation method simply by heating and stirring an aqueous TiOCl2 solution with a Ti4+ concentration of 0.5M at room temperature to 100°C under a pressure of 1 atm. TiO2 precipitates with pure rutile phase having spherical shapes 200-400 nm in diameter formed between room temperature and 65°C, whereas TiO2 precipitates with anatase phase started to form at temperatures >65°C. Precipitates with pure anatase phase having irregular shapes 2-5 µm in size formed at 100°C. Possibly because of the crystallization of an unstable intermediate product, TiO(OH)2, to TiO2xH2O during precipitation, crystalline and ultrafine TiO2 precipitates were formed in aqueous TiOCl2 solution without hydrolyzing directly to Ti(OH)4. Also, formation of a stable TiO2 rutile phase between room temperature and 65°C was likely to occur slowly under these conditions, although TiO2 with rutile phase formed thermodynamically at higher temperatures.

[1]  Wenhua H. Zhu,et al.  The role of gas mixing in flame synthesis of titania powders , 1996 .

[2]  F. Lévy,et al.  TiO2:Ce/CeO2 High Performance Insulators For Thin Film Electroluminescent Devices , 1996 .

[3]  A. Kato,et al.  Effect of Additives on the Formation of Ti02 Particles by Vapor Phase Reaction , 1985 .

[4]  Xing-zhao Ding,et al.  Effect of hydrolysis water on the preparation of nano-crystalline titania powders via a sol-gel process , 1995 .

[5]  S. Pratsinis,et al.  Kinetics of Titanium(IV) Chloride Oxidation , 1990 .

[6]  L. Qi,et al.  Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Particles , 1995 .

[7]  S. Pratsinis,et al.  Corona‐assisted flame synthesis of ultrafine titania particles , 1995 .

[8]  E. Matijević,et al.  Preparation and mechanism of formation of titanium dioxide hydrosols of narrow size distribution , 1977 .

[9]  C. Serna,et al.  Factors affecting the infrared and Raman spectra of rutile powders , 1988 .

[10]  A. Micheli Fabrication and performance evaluation of a titania automotive exhaust gas sensor , 1984 .

[11]  F. Lévy,et al.  TiO2 anatase thin films as gas sensors , 1995 .

[12]  T. Fuyuki,et al.  Electronic Properties of the Interface between Si and TiO2 Deposited at Very Low Temperatures , 1986 .

[13]  H. Bowen,et al.  High-purity, monodisperse TiO2 powders by hydrolysis of titanium tetraethoxide. 1. Synthesis and physical properties , 1985 .

[14]  Giuseppe Storti,et al.  Kinetics of titanium dioxide precipitation by thermal hydrolysis , 1986 .

[15]  Y. Qian,et al.  Preparation of TiO2 powders with different morphologies by an oxidation-hydrothermal combination method , 1995 .

[16]  K. C. Patil,et al.  Combustion synthesis and properties of fine-particle dielectric oxide materials , 1992 .

[17]  N. Dimitrijević,et al.  Colloidal semiconductors as photocatalysts for solar energy conversion , 1990 .

[18]  Sotiris E. Pratsinis,et al.  Vapor synthesis of titania powder by titanium tetrachloride oxidation , 1991 .

[19]  D. Fitzmaurice,et al.  Preparation, Characterization, and Potential-Dependent Optical Absorption Spectroscopy of Unsupported Large-Area Transparent Nanocrystalline TiO2 Membranes , 1995 .

[20]  K. Siefering,et al.  Kinetics of Low‐Pressure Chemical Vapor Deposition of TiO2 from Titanium Tetraisopropoxide , 1990 .

[21]  J. Falconer,et al.  Characterization of TiO2 photocatalysts used in trichloroethene oxidation , 1994 .