Feature selection of gene expression data for Cancer classification using double RBF-kernels

[1]  Peter Bugata,et al.  On some aspects of minimum redundancy maximum relevance feature selection , 2019, Science China Information Sciences.

[2]  Huihui Chen,et al.  A kernel-based clustering method for gene selection with gene expression data , 2016, J. Biomed. Informatics.

[3]  Wei Wu,et al.  Transcriptional profiling analysis and functional prediction of long noncoding RNAs in cancer , 2016, Oncotarget.

[4]  B. N. Sinha,et al.  Studies on Activity of Various Extracts of Albizia amara against Drug induced Gastric Ulcers , 2011 .

[5]  Gary D Bader,et al.  Visualizing gene-set enrichment results using the Cytoscape plug-in enrichment map. , 2011, Methods in molecular biology.

[6]  Raymond J Carroll,et al.  Bayesian Modeling of MPSS Data: Gene Expression Analysis of Bovine Salmonella Infection , 2010, Journal of the American Statistical Association.

[7]  Jin-Kao Hao,et al.  Advances in metaheuristics for gene selection and classification of microarray data , 2010, Briefings Bioinform..

[8]  Blaise Hanczar,et al.  Classification with reject option in gene expression data , 2008, Bioinform..

[9]  Pedro Larrañaga,et al.  A review of feature selection techniques in bioinformatics , 2007, Bioinform..

[10]  Boonserm Kijsirikul,et al.  Evolutionary strategies for multi-scale radial basis function kernels in support vector machines , 2005, GECCO '05.

[11]  Doheon Lee,et al.  Detecting clusters of different geometrical shapes in microarray gene expression data , 2005, Bioinform..

[12]  Xin Zhou,et al.  LS Bound based gene selection for DNA microarray data , 2005, Bioinform..

[13]  Yanqiong Peng,et al.  Quantitative tests of interaction between pollinating and non‐pollinating fig wasps on dioecious Ficus hispida , 2005 .

[14]  Jason Weston,et al.  Gene Selection for Cancer Classification using Support Vector Machines , 2002, Machine Learning.

[15]  Chris H. Q. Ding,et al.  Minimum redundancy feature selection from microarray gene expression data , 2003, Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003.

[16]  Guido Smits,et al.  Improved SVM regression using mixtures of kernels , 2002, Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290).

[17]  Todd,et al.  Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning , 2002, Nature Medicine.

[18]  Bernhard Schölkopf,et al.  Learning with kernels , 2001 .

[19]  M. Xiong,et al.  Biomarker Identification by Feature Wrappers , 2022 .

[20]  Rithy K. Roth,et al.  Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays , 2000, Nature Biotechnology.

[21]  Hichem Frigui,et al.  Simultaneous clustering and attribute discrimination , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[22]  Ash A. Alizadeh,et al.  Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling , 2000, Nature.

[23]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[24]  Theodoros Evgeniou,et al.  Learning with kernel machine architectures , 2000 .

[25]  Gunnar Rätsch,et al.  Input space versus feature space in kernel-based methods , 1999, IEEE Trans. Neural Networks.

[26]  U. Alon,et al.  Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Steven J Skates,et al.  Screening for ovarian cancer: a pilot randomised controlled trial , 1999, The Lancet.

[28]  Nick Chater,et al.  Information gain and decision-theoretic approaches to data selection: Response to Klauer (1999). , 1999 .

[29]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[30]  Pat Langley,et al.  Selection of Relevant Features and Examples in Machine Learning , 1997, Artif. Intell..

[31]  J. Claverie,et al.  The significance of digital gene expression profiles. , 1997, Genome research.

[32]  Vladimir Naumovich Vapni The Nature of Statistical Learning Theory , 1995 .

[33]  Larry A. Rendell,et al.  A Practical Approach to Feature Selection , 1992, ML.