Resource operators for lambda-calculus

We present a simple term calculus with an explicit control of erasure and duplication of substitutions, enjoying a sound and complete correspondence with the intuitionistic fragment of Linear Logic's proof-nets. We show the operational behaviour of the calculus and some of its fundamental properties such as confluence, preservation of strong normalisation, strong normalisation of simply typed terms, step by step simulation of @b-reduction and full composition.

[1]  Daniel J. Dougherty,et al.  Intersection types for explicit substitutions , 2004, Inf. Comput..

[2]  Masahito Hasegawa,et al.  A Terminating and Confluent Linear Lambda Calculus , 2006, RTA.

[3]  Delia Kesner,et al.  Pattern matching as cut elimination , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[4]  Masahito Hasegawa,et al.  Models of sharing graphs : a categorical semantics of let and letrec , 1999 .

[5]  Jean-Jacques Lévy,et al.  Explicit Substitutions and Programming Languages , 1999, FSTTCS.

[6]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[7]  C. J. Bloo,et al.  Preservation of strong normalisation in named lambda calculi with explicit substitution and garbage collection , 1995 .

[8]  Roberto Di Cosmo,et al.  Strong Normalization of Proof Nets Modulo Structural Congruences , 1999, RTA.

[9]  René David,et al.  A lambda-calculus with explicit weakening and explicit substitution , 2001, Math. Struct. Comput. Sci..

[10]  Thérèse Hardin,et al.  Functional back-ends within the lambda-sigma calculus , 1996, ICFP '96.

[11]  Michel Parigot,et al.  Lambda-Mu-Calculus: An Algorithmic Interpretation of Classical Natural Deduction , 1992, LPAR.

[12]  Morten Heine Sørensen,et al.  Strong Normalization from Weak Normalization in Typed Lambda-Calculi , 1997, Inf. Comput..

[13]  A. Church The Calculi of Lambda Conversion. (AM-6) (Annals of Mathematics Studies) , 1985 .

[14]  Tobias Nipkow,et al.  Higher-order critical pairs , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[15]  Helmut Schwichtenberg,et al.  Basic proof theory , 1996, Cambridge tracts in theoretical computer science.

[16]  Samson Abramsky,et al.  Computational Interpretations of Linear Logic , 1993, Theor. Comput. Sci..

[17]  Herman Geuvers,et al.  Explicit substitution : on the edge of strong normalisation , 1996 .

[18]  Jan Willem Klop,et al.  Combinatory reduction systems , 1980 .

[19]  Paul-André Melliès Typed lambda-calculi with explicit substitutions may not terminate , 1995, TLCA.

[20]  Hongwei Xi,et al.  Weak and Strong Beta Normalisations in Typed Lambda-Calculi , 1997, TLCA.

[21]  Gerard Huet,et al.  Conflunt reductions: Abstract properties and applications to term rewriting systems , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[22]  Valeria de Paiva,et al.  Linear Explicit Substitutions , 2000, Log. J. IGPL.

[23]  A. Church The calculi of lambda-conversion , 1941 .

[24]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[25]  Jean Goubault-Larrecq A Proof of Weak Termination of Typed lambda-sigma-Calculi , 1996, TYPES.

[26]  Olivier Laurent Polarized Proof-Nets and Lambda µ-Calculus , 1999 .

[27]  Mizuhito Ogawa,et al.  Uniform Normalisation beyond Orthogonality , 2001, RTA.

[28]  M. Nivat Fiftieth volume of theoretical computer science , 1988 .

[29]  Philip Wadler,et al.  A Syntax for Linear Logic , 1993, MFPS.

[30]  Yves Lafont,et al.  Interaction nets , 1989, POPL '90.

[31]  Rp Rob Nederpelt Strong normalization in a typed lambda calculus with lambda structured types , 1994 .

[32]  Ian Mackie,et al.  Efficient Reductions with Director Strings , 2003, RTA.

[33]  Julien Forest,et al.  A Weak Calculus with Explicit Operators for Pattern Matching and Substitution , 2002, RTA.

[34]  Ian Mackie,et al.  Closed Reductions in the lambda-Calculus , 1999, CSL.

[35]  Gérard P. Huet,et al.  Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems , 1980, J. ACM.

[36]  Joe B. Wells,et al.  Cut rules and explicit substitutions , 2001, Mathematical Structures in Computer Science.

[37]  Luca Roversi,et al.  Lambda Calculus and Intuitionistic Linear Logic , 1997, Stud Logica.

[38]  Alejandro Ríos,et al.  A Lambda-Calculus à la de Bruijn with Explicit Substitutions , 1995, PLILP.

[39]  Laurent Regnier,et al.  Une équivalence sur les lambda-termes , 1994, Theor. Comput. Sci..

[40]  Jean-Yves Girard,et al.  Linear Logic , 1987, Theor. Comput. Sci..

[41]  Roberto Di Cosmo,et al.  Strong normalization of explicit substitutions via cut elimination in proof nets , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[42]  Claude Kirchner,et al.  Higher-order unification via explicit substitutions , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[43]  Y. Lafont From proof-nets to interaction nets , 1995 .

[44]  L. H. Harper,et al.  A Class of Boolean Functions with Linear Combinational Complexity , 1975, Theor. Comput. Sci..

[45]  Kristoffer H. Rose,et al.  Explicit Substitution - Tutorial & Survey , 1996 .

[46]  Stefano Guerrini,et al.  A General Theory of Sharing Graphs , 1999, Theor. Comput. Sci..

[47]  Martín Abadi,et al.  Explicit substitutions , 1989, POPL '90.

[48]  Andrea Asperti,et al.  The optimal implementation of functional programming languages , 1998, Cambridge tracts in theoretical computer science.

[49]  Daniel J. Dougherty,et al.  Reductions, Intersection Types, and Explicit Substitutions , 2003, Math. Struct. Comput. Sci..

[50]  Hugo Herbelin,et al.  A Lambda-Calculus Structure Isomorphic to Gentzen-Style Sequent Calculus Structure , 1994, CSL.

[51]  Roberto Di Cosmo,et al.  Proof Nets And Explicit Substitutions , 2003, Math. Struct. Comput. Sci..

[52]  Nick Benton,et al.  A Term Calculus for Intuitionistic Linear Logic , 1993, TLCA.

[53]  Eduardo Bonelli,et al.  Perpetuality in a named lambda calculus with explicit substitutions , 2001, Mathematical Structures in Computer Science.

[54]  Pierre Lescanne,et al.  λν, a calculus of explicit substitutions which preserves strong normalisation , 1996, Journal of Functional Programming.