Resource operators for lambda-calculus
暂无分享,去创建一个
[1] Daniel J. Dougherty,et al. Intersection types for explicit substitutions , 2004, Inf. Comput..
[2] Masahito Hasegawa,et al. A Terminating and Confluent Linear Lambda Calculus , 2006, RTA.
[3] Delia Kesner,et al. Pattern matching as cut elimination , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).
[4] Masahito Hasegawa,et al. Models of sharing graphs : a categorical semantics of let and letrec , 1999 .
[5] Jean-Jacques Lévy,et al. Explicit Substitutions and Programming Languages , 1999, FSTTCS.
[6] Patrick Brézillon,et al. Lecture Notes in Artificial Intelligence , 1999 .
[7] C. J. Bloo,et al. Preservation of strong normalisation in named lambda calculi with explicit substitution and garbage collection , 1995 .
[8] Roberto Di Cosmo,et al. Strong Normalization of Proof Nets Modulo Structural Congruences , 1999, RTA.
[9] René David,et al. A lambda-calculus with explicit weakening and explicit substitution , 2001, Math. Struct. Comput. Sci..
[10] Thérèse Hardin,et al. Functional back-ends within the lambda-sigma calculus , 1996, ICFP '96.
[11] Michel Parigot,et al. Lambda-Mu-Calculus: An Algorithmic Interpretation of Classical Natural Deduction , 1992, LPAR.
[12] Morten Heine Sørensen,et al. Strong Normalization from Weak Normalization in Typed Lambda-Calculi , 1997, Inf. Comput..
[13] A. Church. The Calculi of Lambda Conversion. (AM-6) (Annals of Mathematics Studies) , 1985 .
[14] Tobias Nipkow,et al. Higher-order critical pairs , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.
[15] Helmut Schwichtenberg,et al. Basic proof theory , 1996, Cambridge tracts in theoretical computer science.
[16] Samson Abramsky,et al. Computational Interpretations of Linear Logic , 1993, Theor. Comput. Sci..
[17] Herman Geuvers,et al. Explicit substitution : on the edge of strong normalisation , 1996 .
[18] Jan Willem Klop,et al. Combinatory reduction systems , 1980 .
[19] Paul-André Melliès. Typed lambda-calculi with explicit substitutions may not terminate , 1995, TLCA.
[20] Hongwei Xi,et al. Weak and Strong Beta Normalisations in Typed Lambda-Calculi , 1997, TLCA.
[21] Gerard Huet,et al. Conflunt reductions: Abstract properties and applications to term rewriting systems , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).
[22] Valeria de Paiva,et al. Linear Explicit Substitutions , 2000, Log. J. IGPL.
[23] A. Church. The calculi of lambda-conversion , 1941 .
[24] Henk Barendregt,et al. The Lambda Calculus: Its Syntax and Semantics , 1985 .
[25] Jean Goubault-Larrecq. A Proof of Weak Termination of Typed lambda-sigma-Calculi , 1996, TYPES.
[26] Olivier Laurent. Polarized Proof-Nets and Lambda µ-Calculus , 1999 .
[27] Mizuhito Ogawa,et al. Uniform Normalisation beyond Orthogonality , 2001, RTA.
[28] M. Nivat. Fiftieth volume of theoretical computer science , 1988 .
[29] Philip Wadler,et al. A Syntax for Linear Logic , 1993, MFPS.
[30] Yves Lafont,et al. Interaction nets , 1989, POPL '90.
[31] Rp Rob Nederpelt. Strong normalization in a typed lambda calculus with lambda structured types , 1994 .
[32] Ian Mackie,et al. Efficient Reductions with Director Strings , 2003, RTA.
[33] Julien Forest,et al. A Weak Calculus with Explicit Operators for Pattern Matching and Substitution , 2002, RTA.
[34] Ian Mackie,et al. Closed Reductions in the lambda-Calculus , 1999, CSL.
[35] Gérard P. Huet,et al. Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems , 1980, J. ACM.
[36] Joe B. Wells,et al. Cut rules and explicit substitutions , 2001, Mathematical Structures in Computer Science.
[37] Luca Roversi,et al. Lambda Calculus and Intuitionistic Linear Logic , 1997, Stud Logica.
[38] Alejandro Ríos,et al. A Lambda-Calculus à la de Bruijn with Explicit Substitutions , 1995, PLILP.
[39] Laurent Regnier,et al. Une équivalence sur les lambda-termes , 1994, Theor. Comput. Sci..
[40] Jean-Yves Girard,et al. Linear Logic , 1987, Theor. Comput. Sci..
[41] Roberto Di Cosmo,et al. Strong normalization of explicit substitutions via cut elimination in proof nets , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.
[42] Claude Kirchner,et al. Higher-order unification via explicit substitutions , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.
[43] Y. Lafont. From proof-nets to interaction nets , 1995 .
[44] L. H. Harper,et al. A Class of Boolean Functions with Linear Combinational Complexity , 1975, Theor. Comput. Sci..
[45] Kristoffer H. Rose,et al. Explicit Substitution - Tutorial & Survey , 1996 .
[46] Stefano Guerrini,et al. A General Theory of Sharing Graphs , 1999, Theor. Comput. Sci..
[47] Martín Abadi,et al. Explicit substitutions , 1989, POPL '90.
[48] Andrea Asperti,et al. The optimal implementation of functional programming languages , 1998, Cambridge tracts in theoretical computer science.
[49] Daniel J. Dougherty,et al. Reductions, Intersection Types, and Explicit Substitutions , 2003, Math. Struct. Comput. Sci..
[50] Hugo Herbelin,et al. A Lambda-Calculus Structure Isomorphic to Gentzen-Style Sequent Calculus Structure , 1994, CSL.
[51] Roberto Di Cosmo,et al. Proof Nets And Explicit Substitutions , 2003, Math. Struct. Comput. Sci..
[52] Nick Benton,et al. A Term Calculus for Intuitionistic Linear Logic , 1993, TLCA.
[53] Eduardo Bonelli,et al. Perpetuality in a named lambda calculus with explicit substitutions , 2001, Mathematical Structures in Computer Science.
[54] Pierre Lescanne,et al. λν, a calculus of explicit substitutions which preserves strong normalisation , 1996, Journal of Functional Programming.