Towards weighing the condensation energy to ascertain the Archimedes force of vacuum
暂无分享,去创建一个
P. Ruggi | E. Calloni | M. D. Laurentis | R. Rosa | L. Fiore | F. Garufi | C. Rovelli | L. Rosa | F. Tafuri | G. Esposito
[1] K. Milton,et al. How does Casimir energy fall? IV. Gravitational interaction of regularized quantum vacuum energy , 2014, 1401.0784.
[2] Holger Muller,et al. Low-frequency terrestrial gravitational-wave detectors , 2013, 1308.2074.
[3] Derek K. Jones,et al. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light , 2013, Nature Photonics.
[4] R. Schnabel,et al. First long-term application of squeezed states of light in a gravitational-wave observatory. , 2013, Physical review letters.
[5] Carlo Rovelli,et al. Death and resurrection of the zeroth principle of thermodynamics , 2013, 1302.0724.
[6] S. Bose,et al. Scientific objectives of Einstein Telescope , 2012, 1206.0331.
[7] M. Loupias,et al. Virgo: a laser interferometer to detect gravitational waves , 2012 .
[8] K. S. Thorne,et al. All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run , 2012, 1202.2788.
[9] G. L. Klimchitskaya,et al. Modifying the Casimir force between indium tin oxide film and Au sphere , 2012, 1201.5585.
[10] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[11] W. Marsden. I and J , 2012 .
[12] L. Milano,et al. An optical readout system for the drag free control of the LISA spacecraft , 2011 .
[13] C. Rovelli,et al. Cosmology forum: Is dark energy really a mystery? , 2010, Nature.
[14] G. M. Harry,et al. Advanced LIGO: the next generation of gravitational wave detectors , 2010 .
[15] R. DeSalvo,et al. A xylophone configuration for a third-generation gravitational wave detector , 2009, 0906.2655.
[16] G. Ciani,et al. Direct force measurements for testing the LISA Pathfinder gravitational reference sensor , 2009 .
[17] B. Dewitt,et al. An introduction to quantum gravity , 2007, 1108.3269.
[18] K. Milton,et al. How does Casimir energy fall? III. Inertial forces on vacuum energy , 2007, 0711.1206.
[19] Low noise cryogenic system for the measurement of the Casimir energy in rigid cavities , 2007, 0710.4060.
[20] K. Milton,et al. Gravitational and inertial mass of Casimir energy , 2007, 0710.3841.
[21] Achim Kempf. On the Casimir effect in the high-Tc cuprates , 2007, 0711.1009.
[22] G. L. Klimchitskaya,et al. Control of the Casimir force by the modification of dielectric properties with light , 2007, 0707.4390.
[23] E. Calloni,et al. Relativistic mechanics of Casimir apparatuses in a weak gravitational field. , 2007, hep-th/0703062.
[24] K. Milton,et al. How Does Casimir Energy Fall , 2007, hep-th/0702091.
[25] T. Padmanabhan,et al. WHY DOES GRAVITY IGNORE THE VACUUM ENERGY , 2006, gr-qc/0609012.
[26] E. Calloni,et al. Energy-momentum tensor for a Casimir apparatus in a weak gravitational field , 2006, hep-th/0606042.
[27] M. Loupias,et al. Measurement of the seismic attenuation performance of the VIRGO Superattenuator , 2005 .
[28] E. Calloni,et al. Variations of Casimir energy from a superconducting transition , 2005, hep-th/0505200.
[29] L. Milano,et al. Towards measuring variations of Casimir energy by a superconducting cavity. , 2004, Physical review letters.
[30] Martin M. Fejer,et al. Test mass materials for a new generation of gravitational wave detectors , 2003, SPIE Astronomical Telescopes + Instrumentation.
[31] E. Álvarez,et al. Quantum Gravity , 2004, gr-qc/0405107.
[32] L. Milano,et al. Vacuum fluctuation force on a rigid Casimir cavity in a gravitational field , 2001, quant-ph/0109091.
[33] I. Antoniadis,et al. On the cosmological constant problem , 1984 .
[34] R. Tolman,et al. Temperature equilibrium in a static gravitational field , 1930 .