Towards weighing the condensation energy to ascertain the Archimedes force of vacuum

We discuss the force exerted by the gravitational field on a Casimir cavity in terms of Archimedes’ force of vacuum, we identify the force that can be tested against observation and we show that the present technology makes it possible to perform the first experimental tests. We motivate the use of suitable high-Tc superconductors as modulators of Archimedes’ force. We analyze the possibility of using gravitational wave interferometers as detectors of the force, transported through an optical spring from the Archimedes vacuum force apparatus to the gravitational interferometers test masses to maintain the two systems well separated. We also analyze the use of balances to actuate and detect the force, we compare different solutions and discuss the most important experimental issues. PACS numbers: 04.80.Cc E-mail: enrico.calloni@na.infn.it E-mail: martina.delaurentis@na.infn.it E-mail: rosario.derosa@na.infn.it E-mail:fabio.garufi@na.infn.it E-mail: luigi.rosa@na.infn.it E-mail: giampiero.esposito@na.infn.it E-mail: rovelli@cpt.univ-mrs.fr E-mail: ruggi@ego-gw.it E-mail: francesco.tafuri@na.infn.it

[1]  K. Milton,et al.  How does Casimir energy fall? IV. Gravitational interaction of regularized quantum vacuum energy , 2014, 1401.0784.

[2]  Holger Muller,et al.  Low-frequency terrestrial gravitational-wave detectors , 2013, 1308.2074.

[3]  Derek K. Jones,et al.  Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light , 2013, Nature Photonics.

[4]  R. Schnabel,et al.  First long-term application of squeezed states of light in a gravitational-wave observatory. , 2013, Physical review letters.

[5]  Carlo Rovelli,et al.  Death and resurrection of the zeroth principle of thermodynamics , 2013, 1302.0724.

[6]  S. Bose,et al.  Scientific objectives of Einstein Telescope , 2012, 1206.0331.

[7]  M. Loupias,et al.  Virgo: a laser interferometer to detect gravitational waves , 2012 .

[8]  K. S. Thorne,et al.  All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run , 2012, 1202.2788.

[9]  G. L. Klimchitskaya,et al.  Modifying the Casimir force between indium tin oxide film and Au sphere , 2012, 1201.5585.

[10]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[11]  W. Marsden I and J , 2012 .

[12]  L. Milano,et al.  An optical readout system for the drag free control of the LISA spacecraft , 2011 .

[13]  C. Rovelli,et al.  Cosmology forum: Is dark energy really a mystery? , 2010, Nature.

[14]  G. M. Harry,et al.  Advanced LIGO: the next generation of gravitational wave detectors , 2010 .

[15]  R. DeSalvo,et al.  A xylophone configuration for a third-generation gravitational wave detector , 2009, 0906.2655.

[16]  G. Ciani,et al.  Direct force measurements for testing the LISA Pathfinder gravitational reference sensor , 2009 .

[17]  B. Dewitt,et al.  An introduction to quantum gravity , 2007, 1108.3269.

[18]  K. Milton,et al.  How does Casimir energy fall? III. Inertial forces on vacuum energy , 2007, 0711.1206.

[19]  Low noise cryogenic system for the measurement of the Casimir energy in rigid cavities , 2007, 0710.4060.

[20]  K. Milton,et al.  Gravitational and inertial mass of Casimir energy , 2007, 0710.3841.

[21]  Achim Kempf On the Casimir effect in the high-Tc cuprates , 2007, 0711.1009.

[22]  G. L. Klimchitskaya,et al.  Control of the Casimir force by the modification of dielectric properties with light , 2007, 0707.4390.

[23]  E. Calloni,et al.  Relativistic mechanics of Casimir apparatuses in a weak gravitational field. , 2007, hep-th/0703062.

[24]  K. Milton,et al.  How Does Casimir Energy Fall , 2007, hep-th/0702091.

[25]  T. Padmanabhan,et al.  WHY DOES GRAVITY IGNORE THE VACUUM ENERGY , 2006, gr-qc/0609012.

[26]  E. Calloni,et al.  Energy-momentum tensor for a Casimir apparatus in a weak gravitational field , 2006, hep-th/0606042.

[27]  M. Loupias,et al.  Measurement of the seismic attenuation performance of the VIRGO Superattenuator , 2005 .

[28]  E. Calloni,et al.  Variations of Casimir energy from a superconducting transition , 2005, hep-th/0505200.

[29]  L. Milano,et al.  Towards measuring variations of Casimir energy by a superconducting cavity. , 2004, Physical review letters.

[30]  Martin M. Fejer,et al.  Test mass materials for a new generation of gravitational wave detectors , 2003, SPIE Astronomical Telescopes + Instrumentation.

[31]  E. Álvarez,et al.  Quantum Gravity , 2004, gr-qc/0405107.

[32]  L. Milano,et al.  Vacuum fluctuation force on a rigid Casimir cavity in a gravitational field , 2001, quant-ph/0109091.

[33]  I. Antoniadis,et al.  On the cosmological constant problem , 1984 .

[34]  R. Tolman,et al.  Temperature equilibrium in a static gravitational field , 1930 .