A single-exponential fixed-parameter algorithm for Distance-Hereditary Vertex Deletion

Vertex deletion problems ask whether it is possible to delete at most $k$ vertices from a graph so that the resulting graph belongs to a specified graph class. Over the past years, the parameterized complexity of vertex deletion to a plethora of graph classes has been systematically researched. Here we present the first single-exponential fixed-parameter tractable algorithm for vertex deletion to distance-hereditary graphs, a well-studied graph class which is particularly important in the context of vertex deletion due to its connection to the graph parameter rank-width. We complement our result with matching asymptotic lower bounds based on the exponential time hypothesis. As an application of our algorithm, we show that a vertex deletion set to distance-hereditary graphs can be used as a parameter which allows single-exponential fixed-parameter tractable algorithms for classical NP-hard problems.

[1]  Rakesh M. Verma,et al.  An Analysis of a Good Algorithm for the Subtree Problem, Corrected , 1989, SIAM J. Comput..

[2]  Stefan Kratsch,et al.  Parameterized complexity of vertex deletion into perfect graph classes , 2013, Theor. Comput. Sci..

[3]  Horst Bunke,et al.  A graph distance metric based on the maximal common subgraph , 1998, Pattern Recognit. Lett..

[4]  Fedor V. Fomin,et al.  Planar F-Deletion: Approximation, Kernelization and Optimal FPT Algorithms , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[5]  Tsan-sheng Hsu,et al.  The Hamiltonian problem on distance-hereditary graphs , 2006, Discret. Appl. Math..

[6]  Paul D. Seymour,et al.  Approximating clique-width and branch-width , 2006, J. Comb. Theory, Ser. B.

[7]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[8]  Christian Komusiewicz,et al.  Fixed-Parameter Algorithms for Cluster Vertex Deletion , 2010, Theory of Computing Systems.

[9]  Michael R. Fellows,et al.  Graph Layout Problems Parameterized by Vertex Cover , 2008, ISAAC.

[10]  Emeric Gioan,et al.  Split decomposition and graph-labelled trees: characterizations and fully-dynamic algorithms for totally decomposable graphs , 2008, Discret. Appl. Math..

[11]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[12]  Russell Impagliazzo,et al.  Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[13]  Ron Shamir,et al.  Faster subtree isomorphism , 1997, Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems.

[14]  Michal Pilipczuk,et al.  Parameterized Algorithms , 2015, Springer International Publishing.

[15]  Shin-Ichi Nakano,et al.  A New Approach to Graph Recognition and Applications to Distance-Hereditary Graphs , 2007, TAMC.

[16]  Wen-Lian Hsu,et al.  Recognizing circle graphs in polynomial time , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[17]  Ran Duan,et al.  A scaling algorithm for maximum weight matching in bipartite graphs , 2012, SODA.

[18]  Derek G. Corneil,et al.  An Optimal, Edges-Only Fully Dynamic Algorithm for Distance-Hereditary Graphs , 2007, STACS.

[19]  Nils M. Kriege,et al.  Finding Maximum Common Biconnected Subgraphs in Series-Parallel Graphs , 2014, MFCS.

[20]  Gabriel Valiente,et al.  Algorithms on Trees and Graphs , 2002, Springer Berlin Heidelberg.

[21]  Liming Cai,et al.  On the existence of subexponential parameterized algorithms , 2003, J. Comput. Syst. Sci..

[22]  Maw-Shang Chang,et al.  Finding a minimum path cover of a distance-hereditary graph in polynomial time , 2007, Discret. Appl. Math..

[23]  Bruce A. Reed,et al.  Finding odd cycle transversals , 2004, Oper. Res. Lett..

[24]  J. Edmonds,et al.  A Combinatorial Decomposition Theory , 1980, Canadian Journal of Mathematics.

[25]  W. Cunningham Decomposition of Directed Graphs , 1982 .

[26]  Maw-Shang Chang,et al.  Linear-time algorithms for the Hamiltonian problems on distance-hereditary graphs, , 2005, Theor. Comput. Sci..

[27]  Andrea Torsello,et al.  Polynomial-time metrics for attributed trees , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Clark F. Olson,et al.  Parallel Algorithms for Hierarchical Clustering , 1995, Parallel Comput..

[29]  Robert Ganian,et al.  On parse trees and Myhill-Nerode-type tools for handling graphs of bounded rank-width , 2010, Discret. Appl. Math..

[30]  Elisabeth Gassner,et al.  A parity domination problem in graphs with bounded treewidth and distance-hereditary graphs , 2008, Computing.

[31]  Christophe Paul,et al.  An FPT Algorithm and a Polynomial Kernel for Linear Rankwidth-1 Vertex Deletion , 2015, Algorithmica.

[32]  Peter L. Hammer,et al.  Completely separable graphs , 1990, Discret. Appl. Math..

[33]  Erik D. Demaine,et al.  An Optimal Decomposition Algorithm for Tree Edit Distance , 2007, ICALP.

[34]  Hans-Jürgen Bandelt,et al.  Distance-hereditary graphs , 1986, J. Comb. Theory B.

[35]  Ming-Yang Kao,et al.  An Even Faster and More Unifying Algorithm for Comparing Trees via Unbalanced Bipartite Matchings , 2001, J. Algorithms.

[36]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique-Width , 2000, Theory of Computing Systems.

[37]  Steven W. Reyner,et al.  An Analysis of a Good Algorithm for the Subtree Problem , 1977, SIAM J. Comput..

[38]  Eun Jung Kim,et al.  A Polynomial Kernel for Block Graph Deletion , 2015, Algorithmica.

[39]  Matthias Rarey,et al.  Maximum common subgraph isomorphism algorithms and their applications in molecular science: a review , 2011 .

[40]  Nils M. Kriege,et al.  On Maximum Common Subgraph Problems in Series-Parallel Graphs , 2014, IWOCA.

[41]  E. Howorka A CHARACTERIZATION OF DISTANCE-HEREDITARY GRAPHS , 1977 .

[42]  André Bouchet Transforming trees by successive local complementations , 1988, J. Graph Theory.

[43]  B. Mohar,et al.  Graph Minors , 2009 .

[44]  Robert Ganian,et al.  Meta-Kernelization using Well-Structured Modulators , 2015, IPEC.

[45]  Tatsuya Akutsu,et al.  A Polynomial-Time Algorithm for Computing the Maximum Common Connected Edge Subgraph of Outerplanar Graphs of Bounded Degree , 2013, Algorithms.

[46]  Maurice Bruynooghe,et al.  A polynomial-time maximum common subgraph algorithm for outerplanar graphs and its application to chemoinformatics , 2013, Annals of Mathematics and Artificial Intelligence.

[47]  O. Cogis,et al.  Computing maximum stable sets for distance-hereditary graphs , 2005, Discret. Optim..

[48]  Jakub Gajarský,et al.  Kernelization Using Structural Parameters on Sparse Graph Classes , 2013, ESA.

[49]  Nils M. Kriege,et al.  Enumeration of Maximum Common Subtree Isomorphisms with Polynomial-Delay , 2014, ISAAC.

[50]  Eun Jung Kim,et al.  A Polynomial Kernel for Distance-Hereditary Vertex Deletion , 2016, Algorithmica.

[51]  Paul D. Seymour,et al.  Graph minors. V. Excluding a planar graph , 1986, J. Comb. Theory B.

[52]  Matthias Rarey,et al.  Feature trees: A new molecular similarity measure based on tree matching , 1998, J. Comput. Aided Mol. Des..

[53]  Moon-Jung Chung,et al.  O(n^(2.55)) Time Algorithms for the Subgraph Homeomorphism Problem on Trees , 1987, J. Algorithms.

[54]  Mario Vento,et al.  Thirty Years Of Graph Matching In Pattern Recognition , 2004, Int. J. Pattern Recognit. Artif. Intell..

[55]  Takeaki Uno,et al.  Algorithms for Enumerating All Perfect, Maximum and Maximal Matchings in Bipartite Graphs , 1997, ISAAC.

[56]  Sang-il Oum,et al.  Rank-Width and Well-Quasi-Ordering , 2008, SIAM J. Discret. Math..

[57]  Mamadou Moustapha Kanté,et al.  Linear Rank-Width of Distance-Hereditary Graphs , 2014, WG.

[58]  Erik D. Demaine,et al.  An optimal decomposition algorithm for tree edit distance , 2006, TALG.

[59]  Mamadou Moustapha Kanté,et al.  Linear Rank-Width of Distance-Hereditary Graphs I. A Polynomial-Time Algorithm , 2014, Algorithmica.

[60]  Naomi Nishimura,et al.  Finding Largest Subtrees and Smallest Supertrees , 1998, Algorithmica.

[61]  Robert E. Tarjan,et al.  Faster Scaling Algorithms for Network Problems , 1989, SIAM J. Comput..

[62]  Amir Abboud,et al.  Subtree Isomorphism Revisited , 2015, SODA.

[63]  Robert Ganian,et al.  Solving Problems on Graphs of High Rank-Width , 2015, Algorithmica.

[64]  Michael R. Fellows,et al.  Fundamentals of Parameterized Complexity , 2013 .

[65]  Atsuhiro Takasu,et al.  On the Complexity of Finding a Largest Common Subtree of Bounded Degree , 2013, FCT.

[66]  Christophe Paul,et al.  Linear Kernels and Single-Exponential Algorithms Via Protrusion Decompositions , 2012, ICALP.

[67]  Saket Saurabh,et al.  A Faster FPT Algorithm and a Smaller Kernel for Block Graph Vertex Deletion , 2015, LATIN.

[68]  Serafino Cicerone,et al.  On the Extension of Bipartite to Parity Graphs , 1999, Discret. Appl. Math..

[69]  Sang-il Oum,et al.  Rank-width and vertex-minors , 2005, J. Comb. Theory, Ser. B.

[70]  Elias Dahlhaus,et al.  Parallel Algorithms for Hierarchical Clustering and Applications to Split Decomposition and Parity Graph Recognition , 2000, J. Algorithms.

[71]  Frank Gurski,et al.  The Behavior of Clique-Width under Graph Operations and Graph Transformations , 2017, Theory of Computing Systems.