Analysis of nonlinear patterns of change with random coefficient models.

Nonlinear patterns of change arise frequently in the analysis of repeated measures from longitudinal studies in psychology. The main feature of nonlinear development is that change is more rapid in some periods than in others. There generally also are strong individual differences, so although there is a general similarity of patterns for different persons over time, individuals exhibit substantial heterogeneity in their particular response. To describe data of this kind, researchers have extended the random coefficient model to accommodate nonlinear trajectories of change. It can often produce a statistically satisfying account of subject-specific development. In this review we describe and illustrate the main ideas of the nonlinear random coefficient model with concrete examples.

[1]  David J. Spiegelhalter,et al.  WinBUGS user manual version 1.4 , 2003 .

[2]  E. Vonesh,et al.  Mixed-effects nonlinear regression for unbalanced repeated measures. , 1992, Biometrics.

[3]  S. Hershberger,et al.  Genetic and environmental contributions to the acquisition of a motor skill , 1996, Nature.

[4]  Christopher H. Morrell,et al.  Estimating Unknown Transition Times Using a Piecewise Nonlinear Mixed-Effects Model in Men with Prostate Cancer , 1995 .

[5]  A. McNeil,et al.  Latent Curve Models: A Structural Equation Approach , 2007 .

[6]  D. Bates,et al.  Mixed-Effects Models in S and S-PLUS , 2001 .

[7]  L. Collins Analysis of longitudinal data: the integration of theoretical model, temporal design, and statistical model. , 2006, Annual review of psychology.

[8]  C. Hertzog,et al.  Assessing psychological change in adulthood: an overview of methodological issues. , 2003, Psychology and aging.

[9]  David J. Hand,et al.  Analysis of Repeated Measures , 1990 .

[10]  Douglas M. Bates,et al.  Nonlinear Regression Analysis and Its Applications , 1988 .

[11]  U. Lindenberger,et al.  Imposing structure on an unstructured environment : Ontogenetic changes in the ability to form rules of behavior under conditions of low environmental predictability , 1999 .

[12]  John A. Rice,et al.  Displaying the important features of large collections of similar curves , 1992 .

[13]  E. Vonesh,et al.  Linear and Nonlinear Models for the Analysis of Repeated Measurements , 1996 .

[14]  R. MacCallum,et al.  Studying Multivariate Change Using Multilevel Models and Latent Curve Models. , 1997, Multivariate behavioral research.

[15]  Jeffrey R. Harring,et al.  Fitting Partially Nonlinear Random Coefficient Models as SEMs , 2006, Multivariate behavioral research.

[16]  G. Seber,et al.  Nonlinear Regression: Seber/Nonlinear Regression , 2005 .

[17]  Karl G. Jöreskog,et al.  Statistical estimation of structural models in longitudinal-developmental investigations , 1979 .

[18]  Robert Cudeck,et al.  Multiphase mixed-effects models for repeated measures data , 2002 .

[19]  Robert Cudeck,et al.  A Version of Quadratic Regression with Interpretable Parameters , 2002, Multivariate behavioral research.

[20]  Robert Cudeck,et al.  Conditionally Linear Mixed-Effects Models With Latent Variable Covariates , 1999 .

[21]  Anthony S. Bryk,et al.  Hierarchical Linear Models: Applications and Data Analysis Methods , 1992 .

[22]  John B. Willett,et al.  Understanding correlates of change by modeling individual differences in growth , 1985 .

[23]  J. Ware,et al.  Applied Longitudinal Analysis , 2004 .

[24]  T. Hakulinen,et al.  A simple non-linear model in incidence prediction. , 1997, Statistics in medicine.

[25]  Michael W. Browne,et al.  Structured latent curve models , 1993 .

[26]  P. Albert,et al.  Models for longitudinal data: a generalized estimating equation approach. , 1988, Biometrics.

[27]  Richard B. Anderson,et al.  Artifactual power curves in forgetting , 1997, Memory & cognition.

[28]  Thomas A. DiPrete,et al.  Multilevel Models: Methods and Substance , 1994 .

[29]  D. Hand,et al.  Practical Longitudinal Data Analysis , 1996 .

[30]  A. Heathcote,et al.  Averaging learning curves across and within participants , 2003, Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc.

[31]  A. Galecki,et al.  NLMEM: a new SAS/IML macro for hierarchical nonlinear models. , 1998, Computer methods and programs in biomedicine.

[32]  Helen Brown,et al.  Applied Mixed Models in Medicine , 2000, Technometrics.

[33]  G. Molenberghs,et al.  Linear Mixed Models for Longitudinal Data , 2001 .

[34]  P. Diggle,et al.  Analysis of Longitudinal Data , 2003 .

[35]  J. Ware,et al.  Random-effects models for longitudinal data. , 1982, Biometrics.

[36]  Amy Wenzel,et al.  One hundred years of forgetting: A quantitative description of retention , 1996 .

[37]  Terry E. Duncan,et al.  An Introduction to Latent Variable Growth Curve Modeling: Concepts, Issues, and Application, Second Edition , 1999 .

[38]  Marie Davidian,et al.  Nonlinear models for repeated measurement data: An overview and update , 2003 .

[39]  N M Laird,et al.  Tutorial in Biostatistics: Evaluating the impact of 'critical periods' in longitudinal studies of growth using piecewise mixed effects models. , 2001, International journal of epidemiology.

[40]  S. Raudenbush,et al.  Comparing personal trajectories and drawing causal inferences from longitudinal data. , 2001, Annual review of psychology.

[41]  William Meredith,et al.  Latent curve analysis , 1990 .

[42]  J. Singer,et al.  Applied Longitudinal Data Analysis , 2003 .

[43]  C. Halaby,et al.  Panel Models in Sociological Research: Theory into Practice , 2004 .

[44]  M. Appelbaum,et al.  Estimating Individual Developmental Functions: Methods and Their Assumptions , 1991 .

[45]  L. Skovgaard NONLINEAR MODELS FOR REPEATED MEASUREMENT DATA. , 1996 .

[46]  Emilio Ferrer,et al.  Alternative Structural Models for Multivariate Longitudinal Data Analysis , 2003 .