Decadal prediction skill in the GEOS-5 forecast system

A suite of decadal predictions has been conducted with the NASA Global Modeling and Assimilation Office’s (GMAO’s) GEOS-5 Atmosphere–Ocean general circulation model. The hind casts are initialized every December 1st from 1959 to 2010, following the CMIP5 experimental protocol for decadal predictions. The initial conditions are from a multi-variate ensemble optimal interpolation ocean and sea-ice reanalysis, and from GMAO’s atmospheric reanalysis, the modern-era retrospective analysis for research and applications. The mean forecast skill of a three-member-ensemble is compared to that of an experiment without initialization but also forced with observed greenhouse gases. The results show that initialization increases the forecast skill of North Atlantic sea surface temperature compared to the uninitialized runs, with the increase in skill maintained for almost a decade over the subtropical and mid-latitude Atlantic. On the other hand, the initialization reduces the skill in predicting the warming trend over some regions outside the Atlantic. The annual-mean atlantic meridional overturning circulation index, which is defined here as the maximum of the zonally-integrated overturning stream function at mid-latitude, is predictable up to a 4-year lead time, consistent with the predictable signal in upper ocean heat content over the North Atlantic. While the 6- to 9-year forecast skill measured by mean squared skill score shows 50 % improvement in the upper ocean heat content over the subtropical and mid-latitude Atlantic, prediction skill is relatively low in the subpolar gyre. This low skill is due in part to features in the spatial pattern of the dominant simulated decadal mode in upper ocean heat content over this region that differ from observations. An analysis of the large-scale temperature budget shows that this is the result of a model bias, implying that realistic simulation of the climatological fields is crucial for skillful decadal forecasts.

[1]  W. G. Strand,et al.  How Much More Global Warming and Sea Level Rise? , 2005, Science.

[2]  Doug M. Smith,et al.  Causes of the rapid warming of the North Atlantic ocean in the mid 1990s , 2012 .

[3]  H. Drange,et al.  Influence of the Atlantic Subpolar Gyre on the Thermohaline Circulation , 2005, Science.

[4]  Eugenia Kalnay,et al.  Ensemble Forecasting at NMC: The Generation of Perturbations , 1993 .

[5]  S. Häkkinen,et al.  Decline of Subpolar North Atlantic Circulation During the 1990s , 2004, Science.

[6]  G. Danabasoglu,et al.  Sensitivity of Atlantic Meridional Overturning Circulation Variability to Parameterized Nordic Sea Overflows in CCSM4 , 2012 .

[7]  Sydney Levitus,et al.  World ocean atlas 2005. Vol. 2, Salinity , 2006 .

[8]  Arun Kumar,et al.  AMOC variations in 1979–2008 simulated by NCEP operational ocean data assimilation system , 2012, Climate Dynamics.

[9]  Takashi T. Sakamoto,et al.  An overview of decadal climate predictability in a multi-model ensemble by climate model MIROC , 2012, Climate Dynamics.

[10]  Alberto M. Mestas-Nuñez,et al.  The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental U.S. , 2001 .

[11]  Adam A. Scaife,et al.  Skilful multi-year predictions of Atlantic hurricane frequency , 2010 .

[12]  S. Gorshkov,et al.  World ocean atlas , 1976 .

[13]  Elizabeth C. Kent,et al.  Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century , 2003 .

[14]  E. Kalnay,et al.  Ensemble Forecasting at NCEP and the Breeding Method , 1997 .

[15]  Andrea Molod,et al.  The GEOS-5 Atmospheric General Circulation Model: Mean Climate and Development from MERRA to Fortuna , 2012 .

[16]  Stephen Cusack,et al.  Improved Surface Temperature Prediction for the Coming Decade from a Global Climate Model , 2007, Science.

[17]  Thomas M. Smith,et al.  Daily High-Resolution-Blended Analyses for Sea Surface Temperature , 2007 .

[18]  Thomas E. Fricker,et al.  A verification framework for interannual-to-decadal predictions experiments , 2012, Climate Dynamics.

[19]  I. Kang,et al.  Coupled bred vectors in the tropical Pacific and their application to ENSO prediction , 2012 .

[20]  M. Mcphaden,et al.  The Global Tropical Moored Buoy Array , 2010 .

[21]  W. J. Gould,et al.  Cooling and freshening of the subpolar North Atlantic Ocean since the 1960s , 1992, Nature.

[22]  Jeff Knight,et al.  A signature of persistent natural thermohaline circulation cycles in observed climate , 2005 .

[23]  Masson-Delmotte,et al.  The Physical Science Basis , 2007 .

[24]  M. Huddleston,et al.  Quality control of ocean temperature and salinity profiles — Historical and real-time data , 2007 .

[25]  Michael E. Mann,et al.  Observed and Simulated Multidecadal Variability in the Northern Hemisphere , 1999 .

[26]  S. Häkkinen,et al.  Warm and Saline Events Embedded in the Meridional Circulation of the Northern North Atlantic , 2011 .

[27]  Antje Weisheimer,et al.  Decadal climate prediction with the European Centre for Medium‐Range Weather Forecasts coupled forecast system: Impact of ocean observations , 2011 .

[28]  S. Levitus,et al.  World ocean atlas 2009 , 2010 .

[29]  M. Balmaseda,et al.  Predictability of the mid-latitude Atlantic meridional overturning circulation in a multi-model system , 2013, Climate Dynamics.

[30]  Francisco J. Doblas-Reyes,et al.  Decadal prediction skill in a multi-model ensemble , 2012, Climate Dynamics.

[31]  Ricardo Todling,et al.  The GEOS-5 Data Assimilation System-Documentation of Versions 5.0.1, 5.1.0, and 5.2.0 , 2008 .

[32]  T. Reichler,et al.  A stratospheric connection to Atlantic climate variability , 2012 .

[33]  J. Wallace,et al.  A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production , 1997 .

[34]  Alicia R. Karspeck,et al.  A decadal prediction case study: Late twentieth-century North Atlantic Ocean heat content , 2012 .

[35]  B. Dong,et al.  Mechanism of interdecadal thermohaline circulation variability in a coupled ocean : Atmosphere GCM , 2005 .

[36]  S. Gille Decadal-Scale Temperature Trends in the Southern Hemisphere Ocean , 2008 .

[37]  G. Meehl,et al.  Decadal prediction: Can it be skillful? , 2009 .

[38]  L. Kornblueh,et al.  Advancing decadal-scale climate prediction in the North Atlantic sector , 2008, Nature.

[39]  M. Kimoto,et al.  Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections , 2009 .

[40]  H. L. Miller,et al.  Global climate projections , 2007 .

[41]  E. Kalnay,et al.  Bred Vectors and Tropical Pacific Forecast Errors in the NASA Coupled General Circulation Model , 2008 .

[42]  T. Delworth,et al.  Can the Atlantic Ocean drive the observed multidecadal variability in Northern Hemisphere mean temperature? , 2007 .

[43]  B. Kirtman,et al.  Decadal North Pacific Bred Vectors in a Coupled GCM , 2007 .

[44]  R. Stouffer,et al.  Committed warming and its implications for climate change , 2001 .

[45]  Richard G. Williams,et al.  Meridional coherence of the North Atlantic meridional overturning circulation , 2007 .

[46]  E. Hawkins,et al.  The potential to narrow uncertainty in projections of regional precipitation change , 2011 .

[47]  S. Schubert,et al.  MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications , 2011 .

[48]  Rüdiger Gerdes,et al.  Formulation of an ocean model for global climate simulations , 2005 .

[49]  Jochem Marotzke,et al.  Two tales of initializing decadal climate predictions experiments with the ECHAM5/MPI-OM model , 2012 .

[50]  James J. Hack,et al.  A New Sea Surface Temperature and Sea Ice Boundary Dataset for the Community Atmosphere Model , 2008 .

[51]  Bin Wang,et al.  How are seasonal prediction skills related to models’ performance on mean state and annual cycle? , 2010 .

[52]  S. Riser,et al.  Decadal Spinup of the South Pacific Subtropical Gyre , 2007 .

[53]  M. Saier,et al.  Climate Change, 2007 , 2007 .

[54]  H. Drange,et al.  Response of the North Atlantic subpolar gyre to persistent North Atlantic oscillation like forcing , 2009 .

[55]  Rong‐Hua Zhang Coherent surface‐subsurface fingerprint of the Atlantic meridional overturning circulation , 2008 .

[56]  T. Delworth,et al.  Simulated Tropical Response to a Substantial Weakening of the Atlantic Thermohaline Circulation , 2005 .

[57]  Detlef Stammer,et al.  Initializing Decadal Climate Predictions with the GECCO Oceanic Synthesis: Effects on the North Atlantic , 2009 .

[58]  J. Shukla,et al.  Ocean Data Assimilation, Initialization, and Predictions of ENSO with a Coupled GCM , 1999 .

[59]  S. Levitus,et al.  Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems , 2007 .

[60]  Stephen M. Griffies,et al.  Predictability of North Atlantic Multidecadal Climate Variability , 1997, Science.

[61]  M. Schmeits,et al.  Responsible Editor: Tal Ezer , 2005 .

[62]  P. Webster,et al.  Evaluation of short‐term climate change prediction in multi‐model CMIP5 decadal hindcasts , 2012 .

[63]  Takashi T. Sakamoto,et al.  Pacific decadal oscillation hindcasts relevant to near-term climate prediction , 2010, Proceedings of the National Academy of Sciences.

[64]  S. Schubert,et al.  The decadal modulation of coupled bred vectors , 2012 .

[65]  David L. T. Anderson,et al.  The ECMWF Ocean Analysis System: ORA-S3 , 2008 .

[66]  Johanna Baehr,et al.  Multiyear Prediction of Monthly Mean Atlantic Meridional Overturning Circulation at 26.5°N , 2012, Science.

[67]  Doug M. Smith,et al.  Initialized decadal predictions of the rapid warming of the North Atlantic Ocean in the mid 1990s , 2012 .

[68]  James M. Murphy,et al.  The impact of ensemble forecasts on predictability , 1988 .

[69]  Doug M. Smith,et al.  A comparison of full-field and anomaly initialization for seasonal to decadal climate prediction , 2013, Climate Dynamics.

[70]  W. Collins,et al.  Global climate projections , 2007 .