The properties of SN Ib/c locations

Aims. We seek to gain a deeper understanding of stripped-envelope, core-collapse supernovae through studying their environments. Methods. We obtained low-resolution optical spectroscopy with the New Technology Telescope (+EFOSC2) at the locations of 20 type Ib/c supernovae. We measured the flux of emission lines in the stellar-continuum-subtracted spectra from which local metallicities are computed. For the supernova regions, we estimate both the mean stellar age, by interpreting the stellar absorption with population synthesis models, and the age of the youngest stellar populations using the Hα equivalent width as an age indicator. These estimates are compared with the lifetimes of single massive stars. Results. Based on our sample, we detect a tentative indication that type Ic supernovae might explode in environments that are more metal-rich than those of type Ib supernovae (average difference of 0.08 dex), but this is not a statistically significant result. The lower limits placed on the ages of the supernova birthplaces are generally young, although there are several cases where these appear older than what is expected for the evolution of single stars that are more massive than 25−30 M� . This is only true, however, when assuming that the supernova progenitors were born during an instantaneous (not continuous) episode of star formation. Conclusions. These results do not conclusively favor any of the two evolutionary paths (single or binary) leading to stripped supernovae. We do note a fraction of events for which binary evolution is more likely due to their associated age limits; however, the supernova environments contain areas of recent (<15 Myr) star formation, and the environmental metallicities at least do not contradict the single evolutionary scenario, suggesting that this channel is also broadly consistent with the observations.

[1]  J. Neill,et al.  THE OLD ENVIRONMENT OF THE FAINT CALCIUM-RICH SUPERNOVA SN 2005cz , 2010, 1012.0570.

[2]  R. Nichol,et al.  NTT and NOT spectroscopy of SDSS-II supernovae , 2010, 1011.5869.

[3]  L. Kewley,et al.  PROGENITOR DIAGNOSTICS FOR STRIPPED CORE-COLLAPSE SUPERNOVAE: MEASURED METALLICITIES AT EXPLOSION SITES , 2010, 1007.0661.

[4]  Ryan Chornock,et al.  Observed Fractions of Core-Collapse Supernova Types and Initial Masses of their Single and Binary Progenitor Stars , 2010, 1006.3899.

[5]  T. Sakamoto,et al.  Discovery of the nearby long, soft GRB 100316D with an associated supernova , 2010, 1004.2919.

[6]  S. Woosley,et al.  TYPE Ib/c SUPERNOVAE IN BINARY SYSTEMS. I. EVOLUTION AND PROPERTIES OF THE PROGENITOR STARS , 2010, 1004.0843.

[7]  Richard Walters,et al.  CORE-COLLAPSE SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY: INDICATIONS FOR A DIFFERENT POPULATION IN DWARF GALAXIES , 2010, 1004.0615.

[8]  Yosuke Minowa,et al.  “DARK” GRB 080325 IN A DUSTY MASSIVE GALAXY AT z ∼ 2 , 2010, 1003.3717.

[9]  J. Fynbo,et al.  Do Wolf-Rayet stars have similar locations in hosts as type Ib/c supernovae and long gamma-ray bursts? , 2010, 1002.3164.

[10]  Andrew S. Fruchter,et al.  A HIGH-METALLICITY HOST ENVIRONMENT FOR THE LONG-DURATION GRB 020819 , 2010, 1001.0970.

[11]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[12]  J. Vanderplas,et al.  FIRST-YEAR SLOAN DIGITAL SKY SURVEY-II SUPERNOVA RESULTS: HUBBLE DIAGRAM AND COSMOLOGICAL PARAMETERS , 2009, 0908.4274.

[13]  E. Stanway,et al.  Spectral population synthesis including massive binaries , 2009, 0908.1386.

[14]  Stephen J. Smartt,et al.  Progenitors of Core-Collapse Supernovae , 2009, 0908.0700.

[15]  L. Kewley,et al.  THE HOST GALAXIES OF GAMMA-RAY BURSTS. I. INTERSTELLAR MEDIUM PROPERTIES OF TEN NEARBY LONG-DURATION GAMMA-RAY BURST HOSTS , 2009, 0907.4988.

[16]  D. A. Kann,et al.  LOW-RESOLUTION SPECTROSCOPY OF GAMMA-RAY BURST OPTICAL AFTERGLOWS: BIASES IN THE SWIFT SAMPLE AND CHARACTERIZATION OF THE ABSORBERS , 2009, 0907.3449.

[17]  J. Anderson,et al.  Comparisons of the radial distributions of core‐collapse supernovae with those of young and old stellar populations★ , 2009, 0907.0034.

[18]  Rolf Walder,et al.  The different progenitors of type Ib, Ic SNe, and of GRB , 2009, 0906.2284.

[19]  I. Paris,et al.  Relative frequencies of supernovae types: dependence on host galaxy magnitude, galactocentric radius, and local metallicity , 2009, 0905.3986.

[20]  H. Courtois,et al.  THE EXTRAGALACTIC DISTANCE DATABASE , 2009, 0902.3668.

[21]  Ricardo Covarrubias,et al.  THE HE-RICH CORE-COLLAPSE SUPERNOVA 2007Y: OBSERVATIONS FROM X-RAY TO RADIO WAVELENGTHS , 2009, 0902.0609.

[22]  J. Anderson,et al.  Constraints on core-collapse supernova progenitors from correlations with Hα emission , 2008, 0809.0236.

[23]  Jesper Sollerman,et al.  NGC 2770: A SUPERNOVA Ib FACTORY? , 2008, 0807.0473.

[24]  C. Dominik,et al.  Size-sorting dust grains in the surface layers of protoplanetary disks , 2008, 0805.4376.

[25]  R. Kirshner,et al.  Long γ-Ray Bursts and Type Ic Core-Collapse Supernovae Have Similar Locations in Hosts , 2007, 0712.0430.

[26]  Chris L. Fryer,et al.  Constraints on Type Ib/c Supernovae and Gamma‐Ray Burst Progenitors , 2007 .

[27]  Christopher A. Tout,et al.  The Effect of Massive Binaries on Stellar Populations and Supernova Progenitors , 2007, Proceedings of the International Astronomical Union.

[28]  P. Giommi,et al.  The host galaxy of GRB 031203 : a new spectroscopic study , 2007, 0709.0198.

[29]  John F. Beacom,et al.  Characterizing Supernova Progenitors via the Metallicities of their Host Galaxies, from Poor Dwarfs to Rich Spirals , 2007, 0707.0690.

[30]  Chris L. Fryer,et al.  Constraints on Type Ib/c and GRB Progenitors , 2007, astro-ph/0702338.

[31]  J. Fynbo,et al.  The nature of the dwarf starforming galaxy associated with GRB 060218/SN 2006aj , 2007, astro-ph/0701034.

[32]  J. Tonry,et al.  Determining the Type, Redshift, and Age of a Supernova Spectrum , 2006, astro-ph/0612512.

[33]  P. Crowther,et al.  Physical Properties of Wolf-Rayet Stars , 2006, astro-ph/0610356.

[34]  E. Floc’h,et al.  Detection of Wolf-Rayet stars in host galaxies of gamma-ray bursts (GRBs) : are GRBs produced by runaway massive stars ejected from high stellar density regions? , 2006, astro-ph/0604461.

[35]  Wendy L. Freedman,et al.  The Carnegie Supernova Project: The Low‐Redshift Survey , 2005, astro-ph/0512039.

[36]  F. Mannucci,et al.  Two populations of progenitors for type ia supernovae , 2005, astro-ph/0510315.

[37]  N. Langer,et al.  Evolution of rapidly rotating metal-poor massive stars towards gamma-ray bursts , 2005, astro-ph/0508242.

[38]  Alexander Heger,et al.  The Progenitor Stars of Gamma-Ray Bursts , 2005, astro-ph/0508175.

[39]  K. Pedersen,et al.  On the nature of nearby GRB/SN host galaxies ⋆ , 2005, astro-ph/0506686.

[40]  Iap,et al.  The ages and metallicities of galaxies in the local universe , 2005, astro-ph/0506539.

[41]  G. Meynet,et al.  Stellar evolution with rotation XI. Wolf-Rayet star populations at different metallicities , 2004, astro-ph/0408319.

[42]  F. Bresolin,et al.  Abundances of Metal-rich H II Regions in M51 , 2004, astro-ph/0407065.

[43]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[44]  M. Pettini,et al.  [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.

[45]  S. Smartt,et al.  The massive binary companion star to the progenitor of supernova 1993J , 2004, Nature.

[46]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[47]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[48]  Pasadena,et al.  On the relative frequencies of core-collapse supernovae sub-types: The role of progenitor metallicity , 2003, astro-ph/0305376.

[49]  A. Chieffi,et al.  Evolution, Explosion, and Nucleosynthesis of Core-Collapse Supernovae , 2003, astro-ph/0304185.

[50]  Chris L. Fryer,et al.  How Massive Single Stars End Their Life , 2002, astro-ph/0212469.

[51]  J. Cuby,et al.  Optical and Infrared Spectroscopy of SN 1999ee and SN 1999ex , 2002, astro-ph/0203491.

[52]  P. Dokkum,et al.  Cosmic-Ray Rejection by Laplacian Edge Detection , 2001, astro-ph/0108003.

[53]  A. Siebert,et al.  A model of spectral galaxy evolution including the effects of nebular emission , 2001, astro-ph/0107139.

[54]  Thomas Matheson,et al.  Optical Spectroscopy of Type Ib/c Supernovae , 2001, astro-ph/0101119.

[55]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[56]  J. Salzer,et al.  Spectroscopy of Outlying H II Regions in Spiral Galaxies: Abundances and Radial Gradients , 1998, astro-ph/9808315.

[57]  Alexei V. Filippenko,et al.  Optical spectra of supernovae , 1997 .

[58]  P. Podsiadlowski,et al.  The progenitor of supernova 1993J: a stripped supergiant in a binary system? , 1993, Nature.

[59]  T. Suzuki,et al.  A type IIb model for supernova 1993J , 1993, Nature.

[60]  S. Woosley,et al.  The evolution of massive stars including mass loss - Presupernova models and explosion , 1993 .

[61]  P. Podsiadlowski,et al.  Presupernova Evolution in Massive Interacting Binaries , 1992 .

[62]  S. McGaugh,et al.  H II region abundances - Model oxygen line ratios , 1991 .

[63]  Princeton,et al.  MEASURED METALLICITIES AT THE SITES OF NEARBY BROAD-LINED TYPE IC SUPERNOVAE AND IMPLICATIONS FOR THE SN-GRB CONNECTION , 2007 .

[64]  Submitted to The Astronomical Journal , 2007 .

[65]  J. Huchra,et al.  H II regions and the abundance properties of spiral galaxies , 1994 .

[66]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .

[67]  G. Meynet,et al.  Stellar evolution with rotation X. Wolf-Rayet star populations at solar metallicity , 2022 .