Simulation of conditional diffusions via forward-reverse stochastic representations

In this paper we derive stochastic representations for the finite dimensional distributions of a multidimensional diffusion on a fixed time interval, conditioned on the terminal state. The conditioning can be with respect to a fixed point or more generally with respect to some subset. The representations rely on a reverse process connected with the given (forward) diffusion as introduced in Milstein et al. [Bernoulli 10(2):281-312, 2004] in the context of a forward-reverse transition density estimator. The corresponding Monte Carlo estimators have essentially root-N accuracy, hence they do not suffer from the curse of dimensionality. We provide a detailed convergence analysis and give a numerical example involving the realized variance in a stochastic volatility asset model conditioned on a fixed terminal value of the asset.

[1]  D. Aronson,et al.  Bounds for the fundamental solution of a parabolic equation , 1967 .

[2]  John G. M. Schoenmakers,et al.  Forward-reverse EM algorithm for Markov chains , 2013 .

[3]  Terry Lyons,et al.  On conditional diffusion processes , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[4]  G. Roberts,et al.  Retrospective exact simulation of diffusion sample paths with applications , 2006 .

[5]  Evaluation of conditional Wiener integrals by numerical integration of stochastic differential equations , 2004 .

[6]  B. Delyon,et al.  Simulation of conditioned diffusion and application to parameter estimation , 2006 .

[7]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[8]  U. Haussmann,et al.  TIME REVERSAL OF DIFFUSIONS , 1986 .

[9]  Martin Hairer,et al.  Sampling conditioned diffusions , 2009 .

[10]  D. Stroock,et al.  Applications of the Malliavin calculus. II , 1985 .

[11]  S. Kusuoka,et al.  Applications of the Malliavin calculus, Part III , 1984 .

[12]  FAST COMMUNICATION CONDITIONAL PATH SAMPLING OF SDES AND THE LANGEVIN , 2004 .

[13]  David Chandler,et al.  Transition path sampling: throwing ropes over rough mountain passes, in the dark. , 2002, Annual review of physical chemistry.

[14]  Raul Tempone,et al.  The Forward-Reverse Algorithm for Stochastic Reaction Networks , 2015 .

[15]  L. Rogers,et al.  Diffusions, Markov processes, and martingales , 1979 .

[16]  Mogens Bladt,et al.  Corrigendum to “Simple simulation of diffusion bridges with application to likelihood inference for diffusions” , 2010, Bernoulli.

[17]  Rong Chen,et al.  On Generating Monte Carlo Samples of Continuous Diffusion Bridges , 2010 .

[18]  G. Roberts,et al.  MCMC methods for diffusion bridges , 2008 .

[19]  Gareth O. Roberts,et al.  Importance sampling techniques for estimation of diffusion models , 2009 .

[20]  John Schoenmakers,et al.  Transition density estimation for stochastic differential equations via forward-reverse representations , 2004 .

[21]  A. Heemink,et al.  Two-particle models for the estimation of the mean and standard deviation of concentrations in coastal waters , 2008 .

[22]  Leslie Greengard,et al.  The Fast Gauss Transform , 1991, SIAM J. Sci. Comput..

[23]  Panos Stinis,et al.  CONDITIONAL PATH SAMPLING FOR STOCHASTIC DIFFERENTIAL EQUATIONS THROUGH DRIFT RELAXATION , 2011 .

[24]  P. Cattiaux,et al.  Hypoelliptic non-homogeneous diffusions , 2002 .

[25]  Martin Hairer,et al.  Sampling conditioned hypoelliptic diffusions , 2009, 0908.0162.