The Wind Imaging Interferometer (WINDII) on the Upper Atmosphere Research Satellite: A 20 year perspective

The Wind Imaging Interferometer (WINDII) was launched on the NASA's Upper Atmosphere Research Satellite on 12 September 1991 and operated until 2003. Its role in the mission was to measure vector winds in the Earth's atmosphere from 80 to 110 km, but its measurements extended to nearly 300 km. The approach employed was to measure Doppler shifts from a suite of visible region airglow lines emitted over this altitude range. These included atomic oxygen O(1S) and O(1D) lines, as well as lines in the OH Meinel (8,3) and O2 Atmospheric (0,0) bands. The instrument employed was a Doppler Michelson Interferometer (DMI) that measured the Doppler shift as a phase shift of the cosinusoidal interferogram generated by single airglow lines. An extensive validation program was conducted after launch to confirm the accuracy of the measurements. The dominant wind field, the first one observed by WINDII, was that of the migrating diurnal tide at the equator. The overall most notable WINDII contribution followed from this; determining the influence of dynamics on the transport of atmospheric species. Currently, non-migrating tides are being studied in the thermosphere at both equatorial and high latitudes. Other aspects investigated included solar and geomagnetic influences, temperatures from atmospheric scale heights, nitric oxide concentrations and the occurrence of polar mesospheric clouds. The results of these observations are reviewed from a perspective of twenty years. A future perspective is then projected, involving more recently developed concepts. It is intended that this description will be helpful for those planning future missions.

[1]  Y. Rochon,et al.  Longitudinal variability of mesospheric temperatures during equinox at middle and high latitudes , 2004 .

[2]  G. Shepherd,et al.  Correlation of airglow temperature and emission rate at Resolute Bay (74.68°N), over four winters (2001–2005) , 2006 .

[3]  I. Mcdade Laboratory measurements required for upper atmospheric remote sensing of atomic oxygen , 1997 .

[4]  Moustafa I. Chahine A general relaxation method for inverse solution of the full radiative transfer equation. , 1972 .

[5]  C. Hines,et al.  On the detection and utilization of gravity waves in airglow studies , 1987 .

[6]  W. Singer,et al.  Equinox transition in wind and airglow observations , 2004 .

[7]  Y. Portnyagin A review of mesospheric and lower thermosphere models , 2006 .

[8]  Rolando R. Garcia,et al.  The effect of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere , 1985 .

[9]  P. Keckhut,et al.  Springtime transition in upper mesospheric temperature in the northern hemisphere , 2002 .

[10]  S. Bruinsma,et al.  Relative density variations at derived from tidal wind observations made by the UARS/WINDII instrument , 2002 .

[11]  M. Geller,et al.  A Calculation of the Structure of Stationary Planetary Waves in Winter , 1977 .

[12]  P. Hays,et al.  Circle to line interferometer optical system. , 1990, Applied optics.

[13]  D. Murtagh,et al.  ETON 3: Altitude profiles of the nightglow continuum at green and near infrared wavelengths , 1986 .

[14]  Gordon G. Shepherd,et al.  The O(1D) dayglow emission as observed by the WIND Imaging Interferometer on UARS , 1996 .

[15]  W. Singer,et al.  Comparison of mesopause region meteor radar winds, medium frequency radar winds and low frequency drifts over Germany , 2009 .

[16]  A. Hedin Extension of the MSIS Thermosphere Model into the middle and lower atmosphere , 1991 .

[17]  C. McLandress,et al.  Empirical model of 90 - 120 km horizontal winds from wind-imaging interferometer green line , 1997 .

[18]  C. Lathuillère,et al.  The OI 630.0 and 557.7nm dayglow measured by WINDII and modeled by TRANSCAR , 2004 .

[19]  W. Gault,et al.  ERWIN: an E-region wind interferometer. , 1996, Applied optics.

[20]  W. Ward,et al.  Observations of the two‐day wave in WINDII data during January, 1993 , 1996 .

[21]  J W Haslett,et al.  WAMDII: wide-angle Michelson Doppler imaging interferometer for Spacelab. , 1985, Applied optics.

[22]  William A. Gault,et al.  An imaging interferometer for satellite observations of wind and temperature on Mars, the Dynamic Atmosphere Mars Observer (DYNAMO) , 2003, Applications of Photonic Technology.

[23]  D. Wu,et al.  Temperature variability in the tropical mesosphere during the northern hemisphere winter , 2008 .

[24]  G. Thuillier,et al.  Springtime transition in lower thermospheric atomic oxygen , 1999 .

[25]  Y. Rochon The retrieval of winds, Doppler temperatures, and emission rates for the WINDII experiment , 2000 .

[26]  J. Russell,et al.  OH layer characteristics during unusual boreal winters of 2004 and 2006 , 2009 .

[27]  Paul B. Hays,et al.  Observations of the O2 atmospheric band nightglow by the High Resolution Doppler Imager , 1994 .

[28]  D. B. Jenkins,et al.  ETON 1: A data base pertinent to the study of energy transfer in the oxygen nightglow , 1986 .

[29]  M. Nicolls,et al.  Discrepancy between the nighttime molecular ion composition given by the International Reference Ionosphere model and airglow measurements at low latitudes , 2006 .

[30]  I. Mcdade,et al.  The photochemistry of the MLT oxygen airglow emissions and the expected influences of tidal perturbations , 1998 .

[31]  C. Englert,et al.  Doppler asymmetric spatial heterodyne spectroscopy (DASH): concept and experimental demonstration. , 2007, Applied optics.

[32]  A. T. Stair,et al.  Rocket measurements of the altitude distributions of the hydroxyl airglow. , 1988 .

[33]  G. Shepherd,et al.  Stratospheric warming effects on thermospheric O(1S) dayglow dynamics , 2011 .

[34]  Paul B. Hays,et al.  Global simulations and observations of O(1S), O2(1Σ) and OH mesospheric nightglow emissions , 1997 .

[35]  R. P. Lowe,et al.  Seasonal temperature variations in the mesopause region at mid-latitude: comparison of lidar and hydroxyl rotational temperatures using windii⧹uars oh Height profiles , 1998 .

[36]  K. Stebel,et al.  Influence of planetary waves on noctilucent cloud occurrence over NW Europe , 2003 .

[37]  G. Thuillier,et al.  MICADO wind measurements from Observatoire de Haute‐Provence for the validation of WINDII green line data , 1996 .

[38]  G. Shepherd,et al.  Global thermospheric atomic oxygen variations observed with the WIND Imaging Interferometer (WINDII): Wave 4 at low and high latitudes , 2011 .

[39]  F. E. Grahek,et al.  A small, high-sensitivity, medium-response ozone detector suitable for measurements from light aircraft , 1992 .

[40]  David L. Phillips,et al.  A Technique for the Numerical Solution of Certain Integral Equations of the First Kind , 1962, JACM.

[41]  C. Lathuillère,et al.  Modeling the OI 630.0 and 557.7 nm thermospheric dayglow during EISCAT-WINDII coordinated measurements , 1999 .

[42]  G. Shepherd,et al.  Upper atmospheric temperatures from Doppler line widths—V. Auroral electron energy spectra and fluxes deduced from the 5577 and 6300 Å atomic oxygen emissions , 1973 .

[43]  N. Rowlands,et al.  The Stratospheric Wind Interferometer For Transport studies (SWIFT) , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[44]  Anne K. Smith,et al.  Planetary waves in coupling the stratosphere and mesosphere during the major stratospheric warming in 2003/2004 , 2008 .

[45]  G. Thuillier,et al.  Fully compensated Michelson interferometer of fixed-path difference. , 1985, Applied optics.

[46]  Shengpan P. Zhang,et al.  Satellite observations of mean winds and tides in the lower thermosphere: 2. Wind Imaging Interferometer monthly winds for 1992 and 1993 , 2007 .

[47]  D. Hunten,et al.  A photometric unit for the airglow and aurora , 1956 .

[48]  P. Bouchareine,et al.  Interféromètre à champ compensé pour spectroscopie par transformation de Fourier , 1991 .

[49]  R. P. Lowe,et al.  Atomic oxygen profiles (80 to 115 km) derived from Wind Imaging Interferometer/Upper Atmospheric Research Satellite measurements of the hydroxyl and greenline airglow: Local time–latitude dependence , 2005 .

[50]  B. Khattatov,et al.  Thermal tides and studies to tune the mechanistic tidal model using UARS observations , 1997 .

[51]  Shengpan P. Zhang,et al.  Neutral winds and emission rates in the lower thermosphere as measured with WINDII/UARS during the April 4–5th 1993 and February 1994 geomagnetic storms , 2002 .

[52]  Gordon G. Shepherd,et al.  Tidal influence on the oxygen and hydroxyl nightglows: Wind Imaging Interferometer observations and thermosphere/ionosphere/mesosphere electrodynamics general circulation model , 2001 .

[53]  Gérard Thuillier,et al.  Co-ordinated EISCAT-MICADO interferometer measurements of neutral winds and temperatures in E- and F-regions , 1990 .

[54]  G. Shepherd,et al.  Solar influence on the O(1D) dayglow emission rate: Global‐scale measurements by WINDII on UARS , 2004 .

[55]  William E. Ward,et al.  A simple model of diurnal variations in the mesospheric oxygen nightglow , 1999 .

[56]  Paul B. Hays,et al.  An empirical model of the Earth's horizontal wind fields: HWM07 , 2008 .

[57]  Shengpan P. Zhang,et al.  Neutral winds in the lower thermosphere observed by WINDII during the April 4–5th, 1993 storm , 2000 .

[58]  Gordon G. Shepherd,et al.  Two day wave induced variations in the oxygen green line volume emission rate: WINDII observations , 1997 .

[59]  M. J. López-Gonzáleza,et al.  Ground-based mesospheric temperatures at mid-latitude derived from O 2 and OH airglow SATI data : Comparison with SABER measurements , 2007 .

[60]  Rawatee Maharaj-Sharma,et al.  Solar variability of the daytime atomic oxygen O(1S) emission in the middle and lower thermosphere , 2004 .

[61]  Gordon G. Shepherd,et al.  The influence of the diurnal tide on the O(¹S) and OH emission rates observed by WINDII on UARS , 1999 .

[62]  J. Barnett,et al.  Climatological distribution of planetary waves in the middle atmosphere , 1990 .

[63]  W. Skinner,et al.  Combined mesosphere/thermosphere winds using WINDII and HRDI data from the Upper Atmosphere , 1996 .

[64]  Gérard Thuillier,et al.  The DTM-2000 empirical thermosphere model with new data assimilation and constraints at lower boundary: accuracy and properties , 2003 .

[65]  Shengpan P. Zhang,et al.  Variations of the mean winds and diurnal tides in the mesosphere and lower thermosphere observed by WINDII from 1992 to 1996 , 2005 .

[66]  J. Holton,et al.  Chapter 12 – Middle Atmosphere Dynamics , 2013 .

[67]  Gordon G. Shepherd,et al.  UPPER ATMOSPHERIC TEMPERATURES FROM DOPPLER LINE WIDTHS. IV. A DETAILED STUDY USING THE OI 5577 A AURORAL AND NIGHTGLOW EMISSION , 1966 .

[68]  G. Groves Seasonal and diurnal variations of middle atmosphere winds , 1980, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[69]  John W. Meriwether,et al.  A review of the photochemistry of selected nightglow emissions from the mesopause , 1989 .

[70]  G. Shepherd Thermospheric observations of equatorial wavenumber 4 density perturbations from WINDII data , 2011 .

[71]  Gordon G. Shepherd,et al.  Wide-Angle Michelson Interferometer for Measuring Doppler Line Widths* , 1966 .

[72]  A fundamental theorem of airglow fluctuations induced by gravity waves , 1997 .

[73]  Gordon G. Shepherd,et al.  Tidal influence on O(¹S) Airglow emission rate distributions at the geographic equator as observed by WINDII , 1995 .

[74]  Y. Rochon,et al.  The meridional wind component of the thermospheric tide observed by WINDII on UARS , 1994 .

[75]  Paul B. Hays,et al.  High-Resolution Doppler Imager on the Upper Atmosphere Research Satellite , 1994, Optics & Photonics.

[76]  C. McLandress,et al.  Satellite observations of thermospheric tides: Results from the Wind Imaging Interferometer on UARS , 1996 .

[77]  G. Shepherd,et al.  Retrieval and validation of mesospheric temperatures from Wind Imaging Interferometer observations , 2001 .

[78]  R. P. Lowe,et al.  Atomic oxygen annual and semi-annual variations in the mesopause region for mid and equatorial latitudes , 2004 .

[79]  E. Dewan Similitude modeling of internal gravity wave spectra , 1991 .

[80]  T. Tsuda,et al.  Empirical wind model for the middle and lower atmosphere. Part 2: Local time variations , 1993 .

[81]  W. Evans,et al.  A new airglow layer in the stratosphere , 1996 .

[82]  C. Hines The Saturation of Gravity Waves in the Middle Atmosphere. Part I: Critique of Linear-Instability Theory , 1991 .

[83]  J. Russell,et al.  Stratospheric warming effects on the tropical mesospheric temperature field , 2007 .

[84]  Y. Rochon,et al.  Doppler temperatures from O( 1 D) airglow in the daytime thermosphere as observed by the Wind Imaging Interferometer (WINDII) on the UARS satellite , 2002 .

[85]  R. H. Wiens,et al.  Validation of O(1S) wind measurements by WINDII: the WIND Imaging Interferometer on UARS , 1996 .

[86]  C. Hines,et al.  On the nonlinear response of airglow to atmospheric gravity waves , 1993 .

[87]  W. Ward,et al.  Longitudinal variations of green line emission rates observed by WINDII at altitudes 90– during 1991–1996 , 2002 .

[88]  D. Ehhalt,et al.  On the temporal variance of stratospheric trace gas concentrations , 1983 .

[89]  R. P. Lowe,et al.  Atomic oxygen profiles (80–94 km) derived from Wind Imaging Interferometer/Upper Atmospheric Research Satellite measurements of the hydroxyl airglow: 1. Validation of technique , 2003 .

[90]  Shengpan P. Zhang,et al.  Satellite observations of mean winds and tides in the lower thermosphere: 1. Aliasing and sampling issues , 2007 .

[91]  D Rees,et al.  Stable and rugged etalon for the Dynamics Explorer Fabry-Perot interferometer. 2: Performance. , 1982, Applied optics.

[92]  R. Wiens,et al.  WINDII measurements of nightglow enhancements in the South Atlantic Magnetic Anomaly Zone , 1999 .

[93]  A M Title,et al.  Improvements in birefringent filters. 6: Analog birefringent elements. , 1980, Applied optics.

[94]  W. Evans,et al.  Observation of polar mesospheric clouds in summer, 1993 by the WINDII Instrument on UARS , 1995 .

[95]  W. Skinner,et al.  Intercalibration of HRDI and WINDII wind measurements , 1997 .

[96]  G. Shepherd,et al.  Average nighttime F region disturbance neutral winds measured by UARS WINDII: Initial results , 2004 .

[97]  P. Richards,et al.  On the inversion of O+(²D-²P) 7320 Å twilight airglow observations: A method for recovering both the ionization frequency and the thermospheric oxygen atom densities , 1991 .

[98]  M. Hersé,et al.  Measurements of Wind in the Upper Atmosphere: First Results of the Micado Instrument , 1988 .

[99]  W. Evans,et al.  WINDII observation of a PMC breakup event during ANLC‐93 , 1995 .

[100]  Larry J. Paxton,et al.  First look at the 20 November 2003 superstorm with TIMED/GUVI: Comparisons with a thermospheric global circulation model , 2005 .

[101]  C. Lathuillère,et al.  WINDII thermosphere temperature perturbation for magnetically active situations , 2004 .

[102]  B. Khattatov,et al.  TMTM simulations of tides: Comparison with UARS observations , 1998 .

[103]  G. Thuillier,et al.  Thermally stable field compensated Michelson interferometer for measurement of temperature and wind of the planetary atmospheres. , 1991, Applied optics.

[104]  S. Twomey,et al.  On the Numerical Solution of Fredholm Integral Equations of the First Kind by the Inversion of the Linear System Produced by Quadrature , 1963, JACM.

[105]  G. Thuillier,et al.  Photochemistry and dynamics in thermospheric intertropical arcs measured by the WIND Imaging Interferometer on board UARS: A comparison with TIE-GCM simulations , 2002 .

[106]  R. H. Wiens,et al.  Optical measurements of winds in the lower thermosphere , 1988 .

[107]  W. Evans,et al.  Global variability of mesospheric temperature: Planetary‐scale perturbations at equatorial and tropical latitudes , 2005 .

[108]  C. Englert,et al.  Design and laboratory tests of a Doppler Asymmetric Spatial Heterodyne (DASH) interferometer for upper atmospheric wind and temperature observations. , 2010, Optics express.

[109]  Takuji Nakamura,et al.  On the consistency of model, ground‐based, and satellite observations of tidal signatures: Initial results from the CAWSES tidal campaigns , 2010 .

[110]  G. Shepherd,et al.  Average daytime F region disturbance neutral winds measured by UARS: Initial results , 2000 .

[111]  Gordon G. Shepherd,et al.  DWM07 global empirical model of upper thermospheric storm-induced disturbance winds , 2008 .

[112]  G. Shepherd,et al.  An analysis of wind imaging interferometer observations of O (1 S) equatorial emission rates using the thermosphere‐ionosphere‐mesosphere‐electrodynamics general circulation model , 1997 .

[113]  Wayne F. J. Evans,et al.  Upper mesosphere temperatures in summer: WINDII observations and comparisons , 1997 .

[114]  W. Ward,et al.  Wavenumber spectra of horizontal wind and temperature measured with WINDII, Part I: observational results , 2000 .

[115]  W. Singer,et al.  Seasonal variation of mesospheric waves at northern middle and high latitudes , 2010 .

[116]  Gordon G. Shepherd,et al.  Seasonal variations of the nighttime O(1S) and OH airglow emission rates at mid‐to‐high latitudes in the context of the large‐scale circulation , 2008 .

[117]  D. Osterbrock,et al.  Investigations of potassium, lithium, and sodium emission in the nightglow and OH cross calibration , 2000 .

[118]  G. Shepherd,et al.  Mesospheric semiannual oscillation in temperature and nightglow emission , 2006 .

[119]  D. B. Jenkins,et al.  ETON 2: Quenching parameters for the proposed precursors of O2(b1Σg+) and O(1S) in the terrestrial nightglow , 1986 .

[120]  Shengpan P. Zhang,et al.  Extreme longitudinal disturbances in the mesosphere and thermosphere observed with the Wind Imaging Interferometer on UARS , 2008 .

[121]  J. M. Reeves,et al.  Polar cap mesosphere wind observations: comparisons of simultaneous measurements with a Fabry-Perot interferometer and a field-widened Michelson interferometer. , 2000, Applied optics.

[122]  R. P. Lowe,et al.  WINDII/UARS observation of twilight behaviour of the hydroxyl airglow, at mid-latitude equinox , 1996 .

[123]  S. Sargoytchev,et al.  Divided-mirror scanning technique for a small Michelson interferometer , 1996, Optics + Photonics.

[124]  W. Ward Tidal mechanisms of dynamical influence on oxygen recombination airglow in the mesosphere and lower thermosphere , 1998 .

[125]  Y. Rochon,et al.  Lower thermospheric nitric oxide concentrations derived from WINDII observations of the green nightglow continuum at 553.1 nm , 1999 .

[126]  A Tikhonov,et al.  Solution of Incorrectly Formulated Problems and the Regularization Method , 1963 .

[127]  William A. Gault,et al.  Design and on-orbit performance of the WINDII baffle system , 1993, Optics & Photonics.

[128]  Gordon G. Shepherd,et al.  Spectral Imaging of the Atmosphere , 2013 .

[129]  G. Shepherd,et al.  Variability of atmospheric winds and waves in the Arctic polar mesosphere during a stratospheric sudden warming , 2004 .

[130]  Neil Rowlands,et al.  Waves Michelson Interferometer: a visible/near-IR interferometer for observing middle atmosphere dynamics and constituents , 2001, Remote Sensing.

[131]  D. Fritts,et al.  Determination of horizontal and vertical structure of an unusual pattern of short period gravity waves imaged during ALOHA-93 , 1995 .

[132]  Shengpan P. Zhang,et al.  Airglow intensity variations induced by gravity waves. Part 2: comparisons with observations , 2001 .

[133]  Y. Rochon,et al.  Auroral observations with the Wind Imaging Interferometer (WINDII) on UARS , 1996 .

[134]  R. P. Lowe,et al.  Longitudinal structure in atomic oxygen concentrations observed with WINDII on UARS , 1993 .

[135]  Wayne F. J. Evans,et al.  Three‐satellite comparison of polar mesospheric clouds: Evidence for long‐term change , 2002 .

[136]  E. Llewellyn The concentration of atomic oxygen in the mesosphere and thermosphere , 1988 .

[137]  D. Murtagh,et al.  Eton 5: Simultaneous rocket measurements of the OH meinel Δυ = 2 sequence and (8,3) band emission profiles in the nightglow , 1987 .

[138]  R. Elphinstone,et al.  Temporal and latitudinal 5577 Å airglow variations , 1981 .

[139]  T. Killeen,et al.  Diurnal nonmigrating tides from TIMED Doppler Interferometer wind data: Monthly climatologies and seasonal variations , 2006 .

[140]  C. Hines,et al.  The Saturation of Gravity Waves in the Middle Atmosphere. Part II: Development Of Doppler-Spread Theory , 1991 .

[141]  G. Shepherd,et al.  Summer high‐latitude mesospheric observations of supersonic bursts and O(1S) emission rate with the UARS WINDII instrument and the association with sprites, meteors, and lightning , 2010 .

[142]  S. Solomon,et al.  TIMED Doppler Interferometer: Overview and recent results , 2006 .

[143]  Ian Powell,et al.  WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite , 1993 .

[144]  B. Lawrence,et al.  A possible mechanism for in situ forcing of planetary waves in the summer extratropical mesosphere , 2001 .

[145]  J. Russell,et al.  Ground-based mesospheric temperatures at mid-latitude derived from O2 and OH airglow SATI data: Comparison with SABER measurements , 2007 .

[146]  M. Duboin Dynamics of the thermosphere: diurnal variations observed by WINDII on board UARS , 1997 .

[147]  I. Mcdade,et al.  The excitation of O(1S) and O2 bands in the nightglow: a brief review and preview , 1986 .

[148]  W. Ward,et al.  In-Flight Calibration of the Wind Imaging Interferometer (WINDII) on Board the Upper Atmosphere Research Satellite. , 1998, Applied optics.

[149]  N. Takegawa,et al.  The wave2000 campaign: Overview and preliminary results , 2002 .

[150]  D. Marsh,et al.  Temporal variations of atomic oxygen in the upper mesosphere from SABER , 2010 .

[151]  C. Lathuillère,et al.  Influence of geomagnetic activity on the O I 630.0 and 557.7 nm dayglow , 2005 .

[152]  W. Skinner,et al.  A global view of the molecular oxygen night airglow , 2003 .

[153]  C. McLandress,et al.  Tidal influence on midlatitude airglow: Comparison of satellite and ground‐based observations with TIME‐GCM predictions , 1998 .

[154]  G. Shepherd,et al.  Statistical comparison of WINDII auroral green line emission rate with DMSP/SSJ4 electron energy input for high and low solar flux years , 2007 .

[155]  G. Shepherd,et al.  Characterization of the wind imaging interferometer. , 1995, Applied optics.

[156]  Chester S. Gardner,et al.  Gravity wave models for the horizontal wave number spectra of atmospheric velocity and density fluctuations , 1993 .

[157]  Dong L. Wu,et al.  Stationary Planetary Waves Inferred from WINDII Wind Data Taken within Altitudes 90–120 km during 1991–96 , 2000 .

[158]  C. Lathuillère,et al.  Winds in the high‐latitude lower thermosphere: Dependence on the interplanetary magnetic field , 2003 .

[159]  E. Talaat,et al.  Direct observations of nonmigrating diurnal tides in the equatorial thermosphere , 2010 .

[160]  G. Shepherd,et al.  Climatology of middle‐ and low‐latitude daytime F region disturbance neutral winds measured by Wind Imaging Interferometer (WINDII) , 2001 .

[161]  P. Vergados,et al.  Retrieving mesospheric water vapour from observations of volume scattering radiances , 2009 .

[162]  C. Fricke-Begemann,et al.  Study of the tidal variations in mesospheric temperature at low and mid latitudes from WINDII and potassium lidar observations , 2004 .

[163]  R. P. Lowe,et al.  Double‐peaked hydroxyl airglow profiles observed from WINDII/UARS , 2000 .

[164]  Susan K. Avery,et al.  Empirical wind model for the upper, middle and lower atmosphere , 1996 .

[165]  E. Dewan The saturated‐cascade model for atmospheric gravity wave spectra, and the wavelength‐period (W‐P) relations , 1994 .

[166]  G. Shepherd,et al.  An investigation of the solar cycle impact on the lower thermosphere O(1S) nightglow emission as observed by WINDII/UARS , 2008 .

[167]  Gordon G. Shepherd,et al.  Perturbed profiles of oxygen nightglow emissions as observed by WINDII on UARS , 2006 .

[168]  Y. Rochon,et al.  Airglow intensity variations induced by gravity waves. Part 1: generalization of the Hines–Tarasick's theory , 2001 .

[169]  D. Offermann,et al.  Global variability of mesospheric temperature : Mean temperature field , 2004 .

[170]  G. Shepherd,et al.  Altitude dependence of middle and low-latitude daytime thermospheric disturbance winds measured by WINDII , 2002 .

[171]  James M. Russell,et al.  Strong longitudinal variations in the OH nightglow , 2010 .

[172]  G. Thuillier,et al.  Mean vertical wind in the mesosphere-lower thermosphere region (80–120 km) deduced from the WINDII observations on board UARS , 1997 .

[173]  Y. Rochon,et al.  Correlations between the mesospheric O(1S) emission peak intensity and height, and temperature at 98 km using WINDII data , 1994 .

[174]  T. Killeen,et al.  A climatology of nonmigrating semidiurnal tides from TIMED Doppler Interferometer (TIDI) wind data , 2007 .

[175]  C. Gardner Diffusive filtering theory of gravity wave spectra in the atmosphere , 1994 .

[176]  Jeffrey M. Forbes,et al.  Climatological features of mesosphere and lower thermosphere stationary planetary waves within ±40° latitude , 2002 .

[177]  T. Tsuda,et al.  Validation of mesosphere and lower thermosphere winds from the high resolution Doppler imager on UARS , 1996 .

[178]  Shengpan P. Zhang,et al.  Nightglow zenith emission rate variations in O(1 S) at low latitudes from wind imaging interferometer (WINDII) observations , 1998 .

[179]  G. Shepherd,et al.  An empirical model for the altitude of the OH nightglow emission , 2006 .

[180]  C. McLandress,et al.  The Seasonal Variation of the Propagating Diurnal Tide in the Mesosphere and Lower Thermosphere. Part II: The Role of Tidal Heating and Zonal Mean Winds , 2002 .

[181]  J. Forbes,et al.  Nonmigrating diurnal tides in the thermosphere , 2009 .

[182]  J. W. Haslett,et al.  WAMDII: wide-angle Michelson Doppler imaging interferometer for Spacelab , 1985 .

[183]  Shengpan P. Zhang,et al.  On the response of the O(1S) dayglow emission rate to the Sun's energy input: An empirical model deduced from WINDII/UARS global measurements , 2005 .

[184]  Gordon G. Shepherd,et al.  Remote sensing of the large-scale circulation of atomic oxygen , 2004, SPIE Remote Sensing.

[185]  J. Gérard,et al.  Observation of anomalous temperatures in the daytime O(1D) 6300 Å thermospheric emission: a possible signature of nonthermal atoms , 2001 .