CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing

Major advances in genome editing have recently been made possible with the development of the TALEN and CRISPR/Cas9 methods. The speed and ease of implementing these technologies has led to an explosion of mutant and transgenic organisms. A rate-limiting step in efficiently applying TALEN and CRISPR/Cas9 methods is the selection and design of targeting constructs. We have developed an online tool, CHOPCHOP (https://chopchop.rc.fas.harvard.edu), to expedite the design process. CHOPCHOP accepts a wide range of inputs (gene identifiers, genomic regions or pasted sequences) and provides an array of advanced options for target selection. It uses efficient sequence alignment algorithms to minimize search times, and rigorously predicts off-target binding of single-guide RNAs (sgRNAs) and TALENs. Each query produces an interactive visualization of the gene with candidate target sites displayed at their genomic positions and color-coded according to quality scores. In addition, for each possible target site, restriction sites and primer candidates are visualized, facilitating a streamlined pipeline of mutant generation and validation. The ease-of-use and speed of CHOPCHOP make it a valuable tool for genome engineering.

[1]  C. Barbas,et al.  ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. , 2013, Trends in biotechnology.

[2]  Feng Zhang,et al.  Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system , 2013, Nucleic acids research.

[3]  Jens Boch,et al.  Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors , 2009, Science.

[4]  Rudolf Jaenisch,et al.  One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering , 2013, Cell.

[5]  Tessa G. Montague,et al.  Efficient Mutagenesis by Cas9 Protein-Mediated Oligonucleotide Insertion and Large-Scale Assessment of Single-Guide RNAs , 2014, PloS one.

[6]  Seung Woo Cho,et al.  Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. , 2009, Genome research.

[7]  G. Hong,et al.  Nucleic Acids Research , 2015, Nucleic Acids Research.

[8]  Terrence S. Furey,et al.  The UCSC Table Browser data retrieval tool , 2004, Nucleic Acids Res..

[9]  G. Church,et al.  CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering , 2013, Nature Biotechnology.

[10]  Matthew J. Moscou,et al.  A Simple Cipher Governs DNA Recognition by TAL Effectors , 2009, Science.

[11]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[12]  Marilyn Fisher,et al.  Simple and efficient CRISPR/Cas9‐mediated targeted mutagenesis in Xenopus tropicalis , 2013, Genesis.

[13]  Gang Bao,et al.  CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity , 2013, Nucleic acids research.

[14]  Feng Zhang,et al.  CRISPR-assisted editing of bacterial genomes , 2013, Nature Biotechnology.

[15]  J. Keith Joung,et al.  Broad Specificity Profiling of TALENs Results in Engineered Nucleases With Improved DNA Cleavage Specificity , 2014, Nature Methods.

[16]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[17]  David R. Liu,et al.  High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity , 2013, Nature Biotechnology.

[18]  Jeffrey Heer,et al.  SpanningAspectRatioBank Easing FunctionS ArrayIn ColorIn Date Interpolator MatrixInterpola NumObjecPointI Rectang ISchedu Parallel Pause Scheduler Sequen Transition Transitioner Transiti Tween Co DelimGraphMLCon IData JSONCon DataField DataSc Dat DataSource Data DataUtil DirtySprite LineS RectSprite , 2011 .

[19]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[20]  Jens Boch,et al.  TAL effector RVD specificities and efficiencies , 2012, Nature Biotechnology.

[21]  Ruhong Zhou,et al.  Comprehensive Interrogation of Natural TALE DNA Binding Modules and Transcriptional Repressor Domains , 2012, Nature Communications.

[22]  B. Faircloth,et al.  Primer3—new capabilities and interfaces , 2012, Nucleic acids research.

[23]  Xiaohui Xie,et al.  Biallelic genome modification in F0 Xenopus tropicalis embryos using the CRISPR/Cas system , 2013, Genesis.

[24]  Jeffry D. Sander,et al.  Efficient In Vivo Genome Editing Using RNA-Guided Nucleases , 2013, Nature Biotechnology.

[25]  Elo Leung,et al.  A TALE nuclease architecture for efficient genome editing , 2011, Nature Biotechnology.

[26]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[27]  J. Keith Joung,et al.  High frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells , 2013, Nature Biotechnology.

[28]  Eli J. Fine,et al.  DNA targeting specificity of RNA-guided Cas9 nucleases , 2013, Nature Biotechnology.

[29]  Volker Brendel,et al.  TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction , 2012, Nucleic Acids Res..

[30]  Jeffrey Heer,et al.  D³ Data-Driven Documents , 2011, IEEE Transactions on Visualization and Computer Graphics.

[31]  Bo Zhang,et al.  CasOT: a genome-wide Cas9/gRNA off-target searching tool , 2014, Bioinform..

[32]  E. Lander,et al.  Genetic Screens in Human Cells Using the CRISPR-Cas9 System , 2013, Science.

[33]  George M. Church,et al.  Heritable genome editing in C. elegans via a CRISPR-Cas9 system , 2013, Nature Methods.

[34]  Melissa M. Harrison,et al.  Genome Engineering of Drosophila with the CRISPR RNA-Guided Cas9 Nuclease , 2013, Genetics.

[35]  David A. Scott,et al.  Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity , 2013, Cell.

[36]  George M. Church,et al.  Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems , 2013, Nucleic acids research.

[37]  Oliver Pelz,et al.  E-TALEN: a web tool to design TALENs for genome engineering , 2013, Nucleic acids research.

[38]  HeerJeffrey,et al.  D3 Data-Driven Documents , 2011 .

[39]  G. Church,et al.  Cas9 as a versatile tool for engineering biology , 2013, Nature Methods.

[40]  M. Boutros,et al.  E-CRISP: fast CRISPR target site identification , 2014, Nature Methods.

[41]  C. Rubinstein,et al.  Highly Specific and Efficient CRISPR/Cas9-Catalyzed Homology-Directed Repair in Drosophila , 2014, Genetics.

[42]  Daniel F. Voytas,et al.  Zinc Finger Targeter (ZiFiT): an engineered zinc finger/target site design tool , 2007, Nucleic Acids Res..

[43]  Stephen C. Ekker,et al.  Mojo Hand, a TALEN design tool for genome editing applications , 2013, BMC Bioinformatics.