Quantitative estimation of granitoid composition from thermal infrared multispectral scanner (TIMS) data, Desolation Wilderness, northern Sierra Nevada, California

We have produced images that quantitatively depict modal and chemical parameters of granitoids using an image processing algorithm called MINMAP that fits Gaussian curves to normalized emittance spectra recovered from thermal infrared multispectral scanner (TIMS) radiance data. We applied the algorithm to TIMS data from the Desolation Wilderness, an extensively glaciated area near the northern end of the Sierra Nevada batholith that is underlain by Jurassic and Cretaceous plutons that range from diorite and anorthosite to leucogranite. The wavelength corresponding to the calculated emittance minimum λmin varies linearly with quartz content, SiO2, and other modal and chemical parameters. Thematic maps of quartz and silica content derived from λmin values distinguish bodies of diorite from surrounding granite, identify outcrops of anorthosite, and separate felsic, intermediate, and mafic rocks.

[1]  J. Thomson,et al.  The mid-infrared reflectance of mineral mixtures (7-14 microns) , 1993 .

[2]  C. Sabine Jurassic plutons in the Desolation wilderness, northern Sierra Nevada batholith, California: A new segment in the Jurassic magmatic arc , 1993 .

[3]  A. Gillespie Enhancement of multispectral thermal infrared images: Decorrelation contrast stretching☆ , 1992 .

[4]  J. Salisbury,et al.  Emissivity of terrestrial materials in the 3–5 μm atmospheric window☆ , 1992 .

[5]  G. R. Fisher Middle Jurassic syntectonic conglomerate in the Mt. Tallac roof pendant, northern Sierra Nevada, California , 1990 .

[6]  John W. Salisbury,et al.  Thermal infrared (2.5–13.5 μm) spectroscopic remote sensing of igneous rock types on particulate planetary surfaces , 1989 .

[7]  J. Salisbury,et al.  Spectral characterization of igneous rocks in the 8‐ to 12‐μm region , 1989 .

[8]  G. R. Fisher Geologic map of the Mount Tallac roof pendant, El Dorado County, California , 1989 .

[9]  John W. Salisbury,et al.  Mid-infrared (2.5 to 13.5 mm) spectra of igneous rocks , 1988 .

[10]  John W. Salisbury,et al.  Mid-infrared (2.1-25 um) spectra of minerals; first edition , 1987 .

[11]  R. E. Walker,et al.  Color enhancement of highly correlated images. I - Decorrelation and HSI contrast stretches. [hue saturation intensity , 1986 .

[12]  A. Gillespie,et al.  Lithologic mapping of silicate rocks using TIMS , 1986 .

[13]  F. Palluconi,et al.  Thermal Infrared Multispectral Scanner (TIMS): An investigator's guide to TIMS data , 1985 .

[14]  J. Soha,et al.  Middle infrared multispectral aircraft scanner data: analysis for geological applications. , 1980, Applied optics.

[15]  John W. Salisbury,et al.  Mid-Infrared Spectral Behavior of Igneous Rocks. , 1974 .

[16]  R. Vincent,et al.  Spectral compositional imaging of silicate rocks. , 1972 .

[17]  A. A. Loomis Contact Metamorphic Reactions and Processes in the Mt. Tallac Roof Remnant, Sierra Nevada, California , 1966 .

[18]  R. Lyon Analysis of rocks by spectral infrared emission (8 to 25 microns) , 1965 .