Largestj-simplices inn-polytopes

Relative to a given convex bodyC, aj-simplexS inC islargest if it has maximum volume (j-measure) among allj-simplices contained inC, andS isstable (resp.rigid) if vol(S)≥vol(S′) (resp. vol(S)>vol(S′)) for eachj-simplexS′ that is obtained fromS by moving a single vertex ofS to a new position inC. This paper contains a variety of qualitative results that are related to the problems of finding a largest, a stable, or a rigidj-simplex in a givenn-dimensional convex body or convex polytope. In particular, the computational complexity of these problems is studied both for-polytopes (presented as the convex hull of a finite set of points) and forℋ-polytopes (presented as an intersection of finitely many half-spaces).

[1]  D. M. Y. Sommerville,et al.  An Introduction to The Geometry of N Dimensions , 2022 .

[2]  Peter Gritzmann,et al.  Computational complexity of inner and outerj-radii of polytopes in finite-dimensional normed spaces , 1993, Math. Program..

[3]  V. Klee,et al.  On the 0-1 Maximization of Positive Definite Quadratic Forms , 1989 .

[4]  Richard M. Karp,et al.  Reducibility among combinatorial problems" in complexity of computer computations , 1972 .

[5]  David Slepian The content of some extreme simplexes , 1969 .

[6]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, STOC '84.

[7]  P. McMullen The maximum numbers of faces of a convex polytope , 1970 .

[8]  M. Dyer Computing the volume of convex bodies : a case where randomness provably helps , 1991 .

[9]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[10]  Alok Aggarwal,et al.  An Optimal Algorithm for Finding Minimal Enclosing Triangles , 1986, J. Algorithms.

[11]  Ján Plesník,et al.  The NP-Completeness of the Hamiltonian Cycle Problem in Planar Digraphs with Degree Bound Two , 1979, Inf. Process. Lett..

[12]  Mihalis Yannakakis,et al.  On recognizing integer polyhedra , 1990, Comb..

[13]  Jan van Leeuwen,et al.  Computational complexity of norm-maximization , 1990, Comb..

[14]  Kenneth Steiglitz,et al.  Some complexity results for the Traveling Salesman Problem , 1976, STOC '76.

[15]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[16]  W. Blaschke Vorlesungen über Differentialgeometrie , 1912 .

[17]  Peter Gritzmann,et al.  On the complexity of some basic problems in computational convexity: I. Containment problems , 1994, Discret. Math..

[18]  David P. Dobkin,et al.  On a general method for maximizing and minimizing among certain geometric problems , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[19]  David M. Mount,et al.  A parallel algorithm for enclosed and enclosing triangles , 1992, Int. J. Comput. Geom. Appl..

[20]  Gert Vegter,et al.  Minimal circumscribing simplices , 1991 .

[21]  Ulrich Faigle,et al.  A Random Polynomial Time Algorithm for Well-rounding Convex Bodies , 1995, Discret. Appl. Math..

[22]  N. Linial Hard enumeration problems in geometry and combinatorics , 1986 .

[23]  Michael J. Todd,et al.  Polynomial Algorithms for Linear Programming , 1988 .

[24]  David Applegate,et al.  Sampling and integration of near log-concave functions , 1991, STOC '91.

[25]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[26]  I. Kuntz,et al.  Distance geometry. , 1989, Methods in enzymology.

[27]  L. Khachiyan Polynomial algorithms in linear programming , 1980 .

[28]  Bernard Chazelle,et al.  Product range spaces, sensitive sampling, and derandomization , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[29]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1989, Discret. Comput. Geom..

[30]  A. Macbeath An extremal property of the hypersphere , 1951, Mathematical Proceedings of the Cambridge Philosophical Society.

[31]  Victor Klee,et al.  Some new results on smoothness and rotundity in normed linear spaces , 1959 .

[32]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[33]  Leonidas J. Guibas,et al.  Diameter, width, closest line pair, and parametric searching , 1993, Discret. Comput. Geom..

[34]  Peter Gritzmann,et al.  Deciding uniqueness in norm maximization , 1992, Math. Program..

[35]  Peter Gritzmann,et al.  On the Complexity of some Basic Problems in Computational Convexity: II. Volume and mixed volumes , 1994, Universität Trier, Mathematik/Informatik, Forschungsbericht.

[36]  David S. Johnson,et al.  A Catalog of Complexity Classes , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[37]  James R. McKinney On maximal simplices inscribed in a central convex set , 1974 .

[38]  Peter M. Gruber,et al.  Die meisten konvexen Körper sind glatt, aber nicht zu glatt , 1977 .

[39]  Victor Klee,et al.  Largest j-simplices in d-cubes: Some relatives of the hadamard maximum determinant problem , 1996 .

[40]  Victor Klee,et al.  Finding the Smallest Triangles Containing a Given Convex Polygon , 1985, J. Algorithms.