A Particle Swarm Optimizer for Constrained Multiobjective Optimization

Generally, constraint-handling techniques are designed for evolutionary algorithms to solve Constrained Multiobjective Optimization Problems (CMOPs). Most Multiojective Particle Swarm Optimization (MOPSO) designs adopt these existing constraint-handling techniques to deal with CMOPs. In this chapter, the authors present a constrained MOPSO in which the information related to particles’ infeasibility and feasibility status is utilized effectively to guide the particles to search for feasible solutions and to improve the quality of the optimal solution found. The updating of personal best archive is based on the particles’ Pareto ranks and their constraint violations. The infeasible global best archive is adopted to store infeasible nondominated solutions. The acceleration constants are adjusted depending on the personal bests’ and selected global bests’ infeasibility and feasibility statuses. The personal bests’ feasibility statuses are integrated to estimate the mutation rate in the mutation procedure. The simulation results indicate that the proposed constrained MOPSO is highly competitive in solving selected benchmark problems.

[1]  Gary E. Gorman,et al.  Enhancing Qualitative and Mixed Methods Research with Technology , 2015, Online Inf. Rev..

[2]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[3]  Pandian Vasant,et al.  Meta-Heuristics Optimization Algorithms in Engineering, Business, Economics, and Finance , 2012 .

[4]  Gerhard-Wilhelm Weber,et al.  Handbook of Research on Emergent Applications of Optimization Algorithms , 2017 .

[5]  Yuren Zhou,et al.  An Adaptive Tradeoff Model for Constrained Evolutionary Optimization , 2008, IEEE Transactions on Evolutionary Computation.

[6]  Sam Takavarasha,et al.  An IT Project Management Framework for Assessing the Dynamism of Culture under Globalization: Evidence from Zimbabwe , 2013, Int. J. Inf. Technol. Proj. Manag..

[7]  Alan D. Christiansen,et al.  MOSES: A MULTIOBJECTIVE OPTIMIZATION TOOL FOR ENGINEERING DESIGN , 1999 .

[8]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[9]  Dan Wang,et al.  A constrained multiobjective evolutionary algorithm based decomposition and temporary register , 2013, 2013 IEEE Congress on Evolutionary Computation.

[10]  S. Azarm,et al.  On improving multiobjective genetic algorithms for design optimization , 1999 .

[11]  Prabhjot Kaur,et al.  Fuzzy Systems for Spectrum Access, Mobility and Management for Cognitive Radios , 2013 .

[12]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[13]  C. Coello,et al.  Multiobjective optimization using a micro-genetic algorithm , 2001 .

[14]  Gary G. Yen,et al.  A generic framework for constrained optimization using genetic algorithms , 2005, IEEE Transactions on Evolutionary Computation.

[15]  Kusum Deep,et al.  Handbook of Research on Soft Computing and Nature-Inspired Algorithms , 2017 .

[16]  Gary G. Yen,et al.  Dynamic Multiple Swarms in Multiobjective Particle Swarm Optimization , 2009, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[17]  P. Vasant,et al.  Hybrid Linear Search, Genetic Algorithms, and Simulated Annealing for Fuzzy Non-Linear Industrial Production Planning Problems , 2013 .

[18]  Min Zhang,et al.  Infeasible Elitists and Stochastic Ranking Selection in Constrained Evolutionary Multi-objective Optimization , 2006, SEAL.

[19]  Rainer Laur,et al.  Constrained Single-Objective Optimization Using Particle Swarm Optimization , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[20]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[21]  Hassan Bevrani,et al.  An On-Line PSO-Based Fuzzy Logic Tuning Approach: Microgrid Frequency Control Case Study , 2014 .

[22]  NovakovStevan,et al.  A Hybrid Technique Using PCA and Wavelets in Network Traffic Anomaly Detection , 2014 .

[23]  Yuping Wang,et al.  A Novel Multi-objective PSO Algorithm for Constrained Optimization Problems , 2006, SEAL.

[24]  Ashu M. G. Solo,et al.  Interval Type-Two Fuzzy Logic for Quantitatively Defining Imprecise Linguistic Terms in Politics and Public Policy , 2014 .

[25]  Wenjian Luo,et al.  A Hybrid of Differential Evolution and Genetic Algorithm for Constrained Multiobjective Optimization Problems , 2006, SEAL.

[26]  K. Bhattacharya Coding is Not a Dirty Word: Theory-Driven Data Analysis Using NVivo , 2015 .

[27]  Gary G. Yen,et al.  Constraint Handling in Multiobjective Evolutionary Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[28]  Yong Wang,et al.  A Multiobjective Optimization-Based Evolutionary Algorithm for Constrained Optimization , 2006, IEEE Transactions on Evolutionary Computation.

[29]  Richard W. Schwester Teaching Research Methods in Public Administration , 2015 .

[30]  A. Ghorbani,et al.  Market Research Methodologies: Multi-Method and Qualitative Approaches , 2014 .

[31]  Shapour Azarm,et al.  Constraint handling improvements for multiobjective genetic algorithms , 2002 .

[32]  S. Shahtahmasebi,et al.  The Information Paradox: Researching Health Service Information Systems Development , 2016 .

[33]  Jorge Freire de Sousa,et al.  Hybrid Heuristics for the Territory Alignment Problem , 2012 .

[34]  Jun Wu,et al.  Dynamic Crowding Distance?A New Diversity Maintenance Strategy for MOEAs , 2008, 2008 Fourth International Conference on Natural Computation.

[35]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[36]  Xin Yao,et al.  Search biases in constrained evolutionary optimization , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[37]  Pedro Isasi Viñuela,et al.  Editorial Special Issue: Computational Finance and Economics , 2009, IEEE Trans. Evol. Comput..

[38]  Bilal Ahmed Khan,et al.  An Advanced Fuzzy Logic Based Traffic Controller , 2014, Int. J. Innov. Digit. Econ..

[39]  Gary G. Yen,et al.  An Adaptive Penalty Formulation for Constrained Evolutionary Optimization , 2009, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[40]  R. Lyndon While,et al.  Multi-level Ranking for Constrained Multi-objective Evolutionary Optimisation , 2006, PPSN.

[41]  Tetsuyuki Takahama,et al.  Constrained Optimization by the ε Constrained Differential Evolution with Gradient-Based Mutation and Feasible Elites , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[42]  Xinghuo Yu,et al.  A multi-objective constraint-handling method with PSO algorithm for constrained engineering optimization problems , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[43]  Hiroyuki Sato,et al.  An evolutionary algorithm using two-stage non-dominated sorting and directed mating for constrained multi-objective optimization , 2012, The 6th International Conference on Soft Computing and Intelligent Systems, and The 13th International Symposium on Advanced Intelligence Systems.

[44]  Khaled Rasheed,et al.  Constrained Multi-objective Optimization Using Steady State Genetic Algorithms , 2003, GECCO.

[45]  Gary G. Yen,et al.  PSO-Based Multiobjective Optimization With Dynamic Population Size and Adaptive Local Archives , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[46]  A. Osyczka,et al.  A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm , 1995 .

[47]  Kakali Bhattacharya,et al.  Practical Wisdom of Tool and Task: Meeting the Demands of the Method with Digital Tools in Qualitatively Driven Mixed Methods Studies , 2015 .

[48]  Carlos A. Coello Coello,et al.  Improving PSO-Based Multi-objective Optimization Using Crowding, Mutation and epsilon-Dominance , 2005, EMO.

[49]  Liu Zhiming,et al.  Solving Constrained Optimization via a Modified Genetic Particle Swarm Optimization , 2008, First International Workshop on Knowledge Discovery and Data Mining (WKDD 2008).

[50]  T. T. Binh MOBES : A multiobjective evolution strategy for constrained optimization problems , 1997 .

[51]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[52]  Haiyan Lu,et al.  Dynamic-objective particle swarm optimization for constrained optimization problems , 2006, J. Comb. Optim..

[53]  Angel A. Juan,et al.  Hybrid Algorithms for Service, Computing and Manufacturing Systems: Routing and Scheduling Solutions , 2011 .

[54]  Gilberto Pérez Lechuga,et al.  Stochastic Optimization of Manufacture Systems by Using Markov Decision Processes , 2016 .

[55]  Pandian Vasant,et al.  Handbook of Research on Modern Optimization Algorithms and Applications in Engineering and Economics , 2016 .

[56]  Ling Wang,et al.  A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization , 2007, Appl. Math. Comput..

[57]  Li-Chen Fu,et al.  A hybrid constraint handling mechanism with differential evolution for constrained multiobjective optimization , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[58]  Fred W. Glover,et al.  Pseudo-Cut Strategies for Global Optimization , 2011, Int. J. Appl. Metaheuristic Comput..

[59]  Tapabrata Ray,et al.  An Evolutionary Algorithm for Constrained Bi-objective Optimization Using Radial Slots , 2005, KES.

[60]  A.F. Gomez-Skarmeta,et al.  An evolutionary algorithm for constrained multi-objective optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[61]  Carlos A. Coello Coello,et al.  A constraint-handling mechanism for particle swarm optimization , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[62]  Ioannis Lambadaris,et al.  A Hybrid Technique Using PCA and Wavelets in Network Traffic Anomaly Detection , 2014, Int. J. Mob. Comput. Multim. Commun..

[63]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms for Constrained Parameter Optimization Problems , 1996, Evolutionary Computation.

[64]  A. Oyama,et al.  New Constraint-Handling Method for Multi-Objective and Multi-Constraint Evolutionary Optimization , 2007 .

[65]  Michael Mutingi,et al.  Fuzzy System Dynamics: An Application to Supply Chain Management , 2014 .

[66]  Isao Ono,et al.  Constraint-Handling Method for Multi-objective Function Optimization: Pareto Descent Repair Operator , 2007, EMO.

[67]  Jing J. Liang,et al.  Dynamic Multi-Swarm Particle Swarm Optimizer with a Novel Constraint-Handling Mechanism , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[68]  Kalyanmoy Deb,et al.  Controlled Elitist Non-dominated Sorting Genetic Algorithms for Better Convergence , 2001, EMO.

[69]  Kalyanmoy Deb,et al.  Constrained Test Problems for Multi-objective Evolutionary Optimization , 2001, EMO.