4.7-THz Local Oscillator for the GREAT Heterodyne Spectrometer on SOFIA

The design and the performance of a 4.7-THz local oscillator (LO) for the GREAT (German REceiver for Astronomy at Terahertz frequencies) heterodyne spectrometer on SOFIA, the Stratospheric Observatory for Infrared Astronomy, are presented. The LO is based on a quantum-cascade laser, which is mounted in a compact mechanical cryocooler. The LO provides up to 150 μW output power into a nearly Gaussian shaped beam. It covers the frequency range from approximately +2 to -4 GHz around the fine structure line of neutral atomic oxygen, OI, at 4.7448 THz. The LO has been successfully operated on SOFIA during six observation flights in May 2014 and January 2015.

[1]  U. U. Graf,et al.  GREAT: the SOFIA high-frequency heterodyne instrument , 2012, 1203.2845.

[2]  Alexander Veprik,et al.  Ultra-low vibration split Stirling linear cryogenic cooler with a dynamically counterbalanced pneumatically driven expander , 2005 .

[3]  A. L. Betz,et al.  Heterodyne Spectroscopy of the 63 μm O I Line in M42 , 1996, astro-ph/9603136.

[4]  Massimo Inguscio,et al.  Quantum-limited frequency fluctuations in a terahertz laser , 2012, Nature Photonics.

[5]  Linda S. Sparke,et al.  Galaxies in the Universe: An Introduction , 2000 .

[6]  H. Hübers,et al.  Characterizing the beam properties of terahertz quantum-cascade lasers , 2014 .

[7]  David A. Ritchie,et al.  Terahertz heterodyne receiver with quantum cascade laser and hot electron bolometer mixer in a pulse tube cooler , 2008 .

[8]  David A. Ritchie,et al.  Terahertz quantum cascade laser as local oscillator in a heterodyne receiver. , 2005, Optics express.

[9]  Andrey M. Baryshev,et al.  A novel terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer , 2005 .

[10]  C. Kramer,et al.  The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI) , 2005, Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics, 2004..

[11]  Manfred Winnewisser,et al.  The spectrum of CH3OH between 100 and 200 cm−1: Torsional and “forbidden” transitions , 1990 .

[12]  S. Weinreb,et al.  The Stratospheric THz Observatory (STO) , 2010, Astronomical Telescopes + Instrumentation.

[13]  A. Tahraoui,et al.  High-temperature, continuous-wave operation of terahertz quantum-cascade lasers with metal-metal waveguides and third-order distributed feedback. , 2014, Optics express.

[14]  B. Williams Terahertz quantum cascade lasers , 2007, 2008 Asia Optical Fiber Communication & Optoelectronic Exposition & Conference.

[15]  Kenneth M. Evenson,et al.  Atomic Oxygen Fine-Structure Splittings with Tunable Far-Infrared Spectroscopy , 1991 .

[16]  Urs U. Graf,et al.  4.7-THz Superconducting Hot Electron Bolometer Waveguide Mixer , 2015, IEEE Transactions on Terahertz Science and Technology.

[17]  R. Hey,et al.  Lateral distributed-feedback gratings for single-mode, high-power terahertz quantum-cascade lasers. , 2012, Optics express.

[18]  P Khosropanah,et al.  Phase locking of a 2.7 THz quantum cascade laser to a microwave reference. , 2009, Optics letters.

[19]  S. Pavlov,et al.  A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler. , 2010, Optics express.

[20]  Yuan Ren,et al.  Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator , 2012, 1208.5776.

[21]  Toralf Scharf,et al.  On the chromatic aberration of microlenses. , 2006, Optics express.

[22]  J. Gallagher,et al.  Galaxies in the Universe - 2nd Edition , 2006 .

[23]  M. Justen,et al.  Terahertz hot electron bolometer waveguide mixers for GREAT , 2012, 1204.2381.

[24]  H. Hübers,et al.  Quantum-cascade lasers as local oscillators for heterodyne spectrometers in the spectral range around 4.745 THz , 2013 .