Comparing expressiveness of set constructor symbols

In this paper we consider the relative expressive power of two very common operators applicable to sets and multisets: the with and the union operators. For such operators we prove that they are not mutually expressible by means of existentially quantified formulae. In order to prove our results, canonical forms for set-theoretic and multiset-theoretic formulae are established and a particularly natural axiomatization of multisets is given and studied.

[1]  W. V. Quine Review: Paul Bernays, A System of Axiomatic Set Theory--Part I , 1938 .

[2]  Paul Bernays,et al.  A system of axiomatic set theory—Part I , 1937, Journal of Symbolic Logic.

[3]  R. Vaught On a Theorem of Cobham Concerning Undecidable Theories , 1966 .

[4]  Joseph R. Shoenfield,et al.  Mathematical logic , 1967 .

[5]  Paul Bernays,et al.  A System of Axiomatic Set Theory , 1976 .

[6]  Kenneth Kunen,et al.  Set Theory: An Introduction to Independence Proofs , 2010 .

[7]  Alberto Policriti,et al.  The logically simplest form of the infinity axiom , 1988 .

[8]  Franz Baader,et al.  Unification in Commutative Idempotent Monoids , 1988, Theor. Comput. Sci..

[9]  Alberto Policriti,et al.  Note on: “The logically simplest form of the infinity axiom” [Proc.\ Amer.\ Math.\ Soc.\ {103} (1988), no.\ 1, 274–276; MR0938682 (89h:03086)] , 1990 .

[10]  Franz Baader,et al.  Unification theory , 1986, Decis. Support Syst..

[11]  Domenico Cantone,et al.  What Is Computable Set Theory , 1990 .

[12]  Carlo Zaniolo,et al.  Compilation of Set Terms in the Logic Data Language (LDL) , 1992, J. Log. Program..

[13]  Agostino Dovier A Language with Finite Sets Embedded in the CLP-scheme , 1993, ELP.

[14]  Eugenio G. Omodeo Solvable set/hyperset context , 1995, JFPLC.

[15]  Alberto Policriti,et al.  Solvable set/hyperset contexts: I. Some decision procedures for the pure, finite case , 1995 .

[16]  Agostino Dovier,et al.  A Language for Programming in Logic with Finite Sets , 1996, J. Log. Program..

[17]  Tova Milo,et al.  Towards Tractable Algebras for Bags , 1996, J. Comput. Syst. Sci..

[18]  Agostino Dovier,et al.  A Minimality Study for Set Unification , 1997, J. Funct. Log. Program..

[19]  Agostino Dovier,et al.  A Uniform Axiomatic View of Lists, Multisets, and Sets, and the Relevant Unification Algorithms , 1998, Fundam. Informaticae.

[20]  Agostino Dovier,et al.  On the Representation and Management of Finite Sets in CLP Languages , 1998, IJCSLP.

[21]  Michael J. Maher,et al.  The Semantics of Constraint Logic Programs , 1998, J. Log. Program..

[22]  Evgeny Dantsin,et al.  A Nondeterministic Polynomial-Time Unification Algorithm for Bags, Sets and Trees , 1999, FoSSaCS.

[23]  Agostino Dovier,et al.  From Set to Hyperset Unification , 1999, J. Funct. Log. Program..

[24]  Bart Demoen,et al.  CAT: The Copying Approach to Tabling , 1999, J. Funct. Log. Program..

[25]  Agostino Dovier,et al.  ACI1 constraints , 1999, APPIA-GULP-PRODE.