Optimization of Anodized-Aluminum Pressure-Sensitive Paint by Controlling Luminophore Concentration

Anodized-aluminum pressure-sensitive paint (AA-PSP) has been used as a global pressure sensor for unsteady flow measurements. We use a dipping deposition method to apply a luminophore on a porous anodized-aluminum surface, controlling the luminophore concentration of the dipping method to optimize AA-PSP characteristics. The concentration is varied from 0.001 to 10 mM. Characterizations include the pressure sensitivity, the temperature dependency, and the signal level. The pressure sensitivity shows around 60 % at a lower concentration up to 0.1 mM. Above this concentration, the sensitivity reduces to a half. The temperature dependency becomes more than a half by setting the luminophore concentration from 0.001 to 10 mM. There is 3.6-fold change in the signal level by varying the concentration. To discuss an optimum concentration, a weight coefficient is introduced. We can arbitrarily change the coefficients to create an optimized AA-PSP for our sensing purposes.