Approximate Bayesian conditional copulas
暂无分享,去创建一个
[1] Noel A. C. Cressie,et al. Statistics for Spatial Data: Cressie/Statistics , 1993 .
[2] Claudia Czado,et al. Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas , 2015, J. Multivar. Anal..
[3] Claudia Czado,et al. Pair-Copula Constructions of Multivariate Copulas , 2010 .
[4] Irène Gijbels,et al. Conditional copulas, association measures and their applications , 2011, Comput. Stat. Data Anal..
[5] Claudia Czado,et al. Analyzing Dependent Data with Vine Copulas , 2019, Lecture Notes in Statistics.
[6] Julian Stander,et al. Analysis of paediatric visual acuity using Bayesian copula models with sinh‐arcsinh marginal densities , 2019, Statistics in medicine.
[7] Nadja Klein,et al. Simultaneous inference in structured additive conditional copula regression models: a unifying Bayesian approach , 2016, Stat. Comput..
[8] Christian Genest,et al. Beyond simplified pair-copula constructions , 2012, J. Multivar. Anal..
[9] David T. Frazier,et al. Bayesian Synthetic Likelihood , 2017, 2305.05120.
[10] I. Gijbels,et al. Multivariate and functional covariates and conditional copulas , 2012 .
[11] Susanne M. Schennach,et al. Bayesian exponentially tilted empirical likelihood , 2005 .
[12] Xiaotong Shen,et al. Empirical Likelihood , 2002 .
[13] Radu V. Craiu,et al. Dependence Calibration in Conditional Copulas: A Nonparametric Approach , 2011, Biometrics.
[14] Fabian Spanhel,et al. Testing the simplifying assumption in high-dimensional vine copulas , 2017 .
[15] Rui Paulo. Default priors for Gaussian processes , 2005 .
[16] J. Knapp,et al. CORSIKA: A Monte Carlo code to simulate extensive air showers , 1998 .
[17] Radu V. Craiu,et al. In mixed company: Bayesian inference for bivariate conditional copula models with discrete and continuous outcomes , 2012, J. Multivar. Anal..
[18] Claudia Czado,et al. Using model distances to investigate the simplifying assumption, model selection and truncation levels for vine copulas , 2016, 1610.08795.
[19] Irène Gijbels,et al. Semiparametric estimation of conditional copulas , 2012, J. Multivar. Anal..
[20] Petr Savický,et al. Softening Splits in Decision Trees Using Simulated Annealing , 2007, ICANNGA.
[21] Radu V. Craiu,et al. Statistical testing of covariate effects in conditional copula models , 2013 .
[22] D. Annis. Bayes Linear Statistics: Theory and Methods , 2008 .
[23] Petr Savický,et al. Methods for multidimensional event classification: A case study using images from a Cherenkov gamma-ray telescope , 2004 .
[24] Mary C. Meyer. INFERENCE USING SHAPE-RESTRICTED REGRESSION SPLINES , 2008, 0811.1705.
[25] Werner Pessenlehner,et al. BUILDING MORPHOLOGY, TRANSPARENCE, AND ENERGY PERFORMANCE , 2003 .
[26] Friedrich Schmid,et al. Multivariate Extensions of Spearman's Rho and Related Statistics , 2007 .
[27] M. Sklar. Fonctions de repartition a n dimensions et leurs marges , 1959 .
[28] Michael U. Gutmann,et al. Bayesian Optimization for Likelihood-Free Inference of Simulator-Based Statistical Models , 2015, J. Mach. Learn. Res..
[29] Athanasios Tsanas,et al. Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools , 2012 .
[30] David Wooff,et al. Bayes Linear Statistics , 2007 .
[31] S. Walker,et al. Bayesian nonparametric estimation of a copula , 2015 .
[32] M. Haugh,et al. An Introduction to Copulas , 2016 .
[33] Jennifer A. Hoeting,et al. Bayesian estimation and inference for generalised partial linear models using shape-restricted splines , 2011 .
[34] Irène Gijbels,et al. Estimation of a Copula when a Covariate Affects only Marginal Distributions , 2015 .
[35] Moncef Krarti,et al. A simplified analysis method to predict the impact of shape on annual energy use for office buildings , 2007 .
[36] Jing Qin,et al. Robust nonparametric estimation of the conditional tail dependence coefficient , 2020, J. Multivar. Anal..
[37] Evgeny Levi,et al. Bayesian inference for conditional copulas using Gaussian Process single index models , 2018, Comput. Stat. Data Anal..
[38] Andrew J. Patton. Modelling Asymmetric Exchange Rate Dependence , 2006 .
[39] I. Gijbels,et al. Estimation of a Conditional Copula and Association Measures , 2011 .
[40] S. Geisser,et al. A Predictive Approach to Model Selection , 1979 .
[41] Yanan Fan,et al. A review of approximate Bayesian computation methods via density estimation: Inference for simulator‐models , 2019, WIREs Computational Statistics.
[42] Brunero Liseo,et al. Approximate Bayesian Methods for Multivariate and Conditional Copulae , 2016, SMPS.
[43] Aki Vehtari,et al. A survey of Bayesian predictive methods for model assessment, selection and comparison , 2012 .
[44] Jun Yan,et al. Modeling Multivariate Distributions with Continuous Margins Using the copula R Package , 2010 .
[45] L. D. Valle,et al. Bayesian non‐parametric conditional copula estimation of twin data , 2016, 1603.03484.
[46] Claudia Czado,et al. Examination and visualisation of the simplifying assumption for vine copulas in three dimensions , 2016, 1602.05795.
[47] Andrew and Marsh Andrew Roberts,et al. ECOTECT: Environmental Prediction in Architectural Education , 2001, eCAADe proceedings.
[48] Sumio Watanabe,et al. A widely applicable Bayesian information criterion , 2012, J. Mach. Learn. Res..
[49] Christian P Robert,et al. Bayesian computation via empirical likelihood , 2012, Proceedings of the National Academy of Sciences.
[50] J. Ramsay. Monotone Regression Splines in Action , 1988 .
[51] Kjersti Aas,et al. On the simplified pair-copula construction - Simply useful or too simplistic? , 2010, J. Multivar. Anal..
[52] Thibault Vatter,et al. Generalized additive models for conditional dependence structures , 2015, J. Multivar. Anal..
[53] C. Genest,et al. A semiparametric estimation procedure of dependence parameters in multivariate families of distributions , 1995 .
[54] Stephen G. Walker,et al. Sampling the Dirichlet Mixture Model with Slices , 2006, Commun. Stat. Simul. Comput..