Approximate Bayesian conditional copulas

Copula models are flexible tools to represent complex structures of dependence for multivariate random variables. According to Sklar’s theorem (Sklar, 1959), any d-dimensional absolutely continuous density can be uniquely represented as the product of the marginal distributions and a copula function which captures the dependence structure among the vector components. In real data applications, the interest of the analyses often lies on specific functionals of the dependence, which quantify aspects of it in a few numerical values. A broad literature exists on such functionals, however extensions to include covariates are still limited. This is mainly due to the lack of unbiased estimators of the copula function, especially when one does not have enough information to select the copula model. Recent advances in computational methodologies and algorithms have allowed inference in the presence of complicated likelihood functions, especially in the Bayesian approach, whose methods, despite being computationally intensive, allow us to better evaluate the uncertainty of the estimates. In this work, we present several Bayesian methods to approximate the posterior distribution of functionals of the dependence, using nonparametric models which avoid the selection of the copula function. These methods are compared in simulation studies and in two realistic applications, from civil engineering and astrophysics.

[1]  Noel A. C. Cressie,et al.  Statistics for Spatial Data: Cressie/Statistics , 1993 .

[2]  Claudia Czado,et al.  Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas , 2015, J. Multivar. Anal..

[3]  Claudia Czado,et al.  Pair-Copula Constructions of Multivariate Copulas , 2010 .

[4]  Irène Gijbels,et al.  Conditional copulas, association measures and their applications , 2011, Comput. Stat. Data Anal..

[5]  Claudia Czado,et al.  Analyzing Dependent Data with Vine Copulas , 2019, Lecture Notes in Statistics.

[6]  Julian Stander,et al.  Analysis of paediatric visual acuity using Bayesian copula models with sinh‐arcsinh marginal densities , 2019, Statistics in medicine.

[7]  Nadja Klein,et al.  Simultaneous inference in structured additive conditional copula regression models: a unifying Bayesian approach , 2016, Stat. Comput..

[8]  Christian Genest,et al.  Beyond simplified pair-copula constructions , 2012, J. Multivar. Anal..

[9]  David T. Frazier,et al.  Bayesian Synthetic Likelihood , 2017, 2305.05120.

[10]  I. Gijbels,et al.  Multivariate and functional covariates and conditional copulas , 2012 .

[11]  Susanne M. Schennach,et al.  Bayesian exponentially tilted empirical likelihood , 2005 .

[12]  Xiaotong Shen,et al.  Empirical Likelihood , 2002 .

[13]  Radu V. Craiu,et al.  Dependence Calibration in Conditional Copulas: A Nonparametric Approach , 2011, Biometrics.

[14]  Fabian Spanhel,et al.  Testing the simplifying assumption in high-dimensional vine copulas , 2017 .

[15]  Rui Paulo Default priors for Gaussian processes , 2005 .

[16]  J. Knapp,et al.  CORSIKA: A Monte Carlo code to simulate extensive air showers , 1998 .

[17]  Radu V. Craiu,et al.  In mixed company: Bayesian inference for bivariate conditional copula models with discrete and continuous outcomes , 2012, J. Multivar. Anal..

[18]  Claudia Czado,et al.  Using model distances to investigate the simplifying assumption, model selection and truncation levels for vine copulas , 2016, 1610.08795.

[19]  Irène Gijbels,et al.  Semiparametric estimation of conditional copulas , 2012, J. Multivar. Anal..

[20]  Petr Savický,et al.  Softening Splits in Decision Trees Using Simulated Annealing , 2007, ICANNGA.

[21]  Radu V. Craiu,et al.  Statistical testing of covariate effects in conditional copula models , 2013 .

[22]  D. Annis Bayes Linear Statistics: Theory and Methods , 2008 .

[23]  Petr Savický,et al.  Methods for multidimensional event classification: A case study using images from a Cherenkov gamma-ray telescope , 2004 .

[24]  Mary C. Meyer INFERENCE USING SHAPE-RESTRICTED REGRESSION SPLINES , 2008, 0811.1705.

[25]  Werner Pessenlehner,et al.  BUILDING MORPHOLOGY, TRANSPARENCE, AND ENERGY PERFORMANCE , 2003 .

[26]  Friedrich Schmid,et al.  Multivariate Extensions of Spearman's Rho and Related Statistics , 2007 .

[27]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[28]  Michael U. Gutmann,et al.  Bayesian Optimization for Likelihood-Free Inference of Simulator-Based Statistical Models , 2015, J. Mach. Learn. Res..

[29]  Athanasios Tsanas,et al.  Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools , 2012 .

[30]  David Wooff,et al.  Bayes Linear Statistics , 2007 .

[31]  S. Walker,et al.  Bayesian nonparametric estimation of a copula , 2015 .

[32]  M. Haugh,et al.  An Introduction to Copulas , 2016 .

[33]  Jennifer A. Hoeting,et al.  Bayesian estimation and inference for generalised partial linear models using shape-restricted splines , 2011 .

[34]  Irène Gijbels,et al.  Estimation of a Copula when a Covariate Affects only Marginal Distributions , 2015 .

[35]  Moncef Krarti,et al.  A simplified analysis method to predict the impact of shape on annual energy use for office buildings , 2007 .

[36]  Jing Qin,et al.  Robust nonparametric estimation of the conditional tail dependence coefficient , 2020, J. Multivar. Anal..

[37]  Evgeny Levi,et al.  Bayesian inference for conditional copulas using Gaussian Process single index models , 2018, Comput. Stat. Data Anal..

[38]  Andrew J. Patton Modelling Asymmetric Exchange Rate Dependence , 2006 .

[39]  I. Gijbels,et al.  Estimation of a Conditional Copula and Association Measures , 2011 .

[40]  S. Geisser,et al.  A Predictive Approach to Model Selection , 1979 .

[41]  Yanan Fan,et al.  A review of approximate Bayesian computation methods via density estimation: Inference for simulator‐models , 2019, WIREs Computational Statistics.

[42]  Brunero Liseo,et al.  Approximate Bayesian Methods for Multivariate and Conditional Copulae , 2016, SMPS.

[43]  Aki Vehtari,et al.  A survey of Bayesian predictive methods for model assessment, selection and comparison , 2012 .

[44]  Jun Yan,et al.  Modeling Multivariate Distributions with Continuous Margins Using the copula R Package , 2010 .

[45]  L. D. Valle,et al.  Bayesian non‐parametric conditional copula estimation of twin data , 2016, 1603.03484.

[46]  Claudia Czado,et al.  Examination and visualisation of the simplifying assumption for vine copulas in three dimensions , 2016, 1602.05795.

[47]  Andrew and Marsh Andrew Roberts,et al.  ECOTECT: Environmental Prediction in Architectural Education , 2001, eCAADe proceedings.

[48]  Sumio Watanabe,et al.  A widely applicable Bayesian information criterion , 2012, J. Mach. Learn. Res..

[49]  Christian P Robert,et al.  Bayesian computation via empirical likelihood , 2012, Proceedings of the National Academy of Sciences.

[50]  J. Ramsay Monotone Regression Splines in Action , 1988 .

[51]  Kjersti Aas,et al.  On the simplified pair-copula construction - Simply useful or too simplistic? , 2010, J. Multivar. Anal..

[52]  Thibault Vatter,et al.  Generalized additive models for conditional dependence structures , 2015, J. Multivar. Anal..

[53]  C. Genest,et al.  A semiparametric estimation procedure of dependence parameters in multivariate families of distributions , 1995 .

[54]  Stephen G. Walker,et al.  Sampling the Dirichlet Mixture Model with Slices , 2006, Commun. Stat. Simul. Comput..