Systemic delivery of antagomirs during blood-brain barrier disruption is disease-modifying in experimental epilepsy

[1]  W. Löscher The holy grail of epilepsy prevention: Preclinical approaches to antiepileptogenic treatments , 2020, Neuropharmacology.

[2]  D. Henshall,et al.  Genetic deletion of microRNA-22 blunts the inflammatory transcriptional response to status epilepticus and exacerbates epilepsy in mice , 2020, Molecular Brain.

[3]  E. Aronica,et al.  Chronic Regulation of miR-124-3p in the Perilesional Cortex after Experimental and Human TBI , 2020, International journal of molecular sciences.

[4]  O. Sakowitz,et al.  Early blood-brain barrier dysfunction predicts neurological outcome following aneurysmal subarachnoid hemorrhage , 2019, EBioMedicine.

[5]  Fei Sun,et al.  Silencing MicroRNA-134 Alleviates Hippocampal Damage and Occurrence of Spontaneous Seizures After Intraventricular Kainic Acid-Induced Status Epilepticus in Rats , 2019, Front. Cell. Neurosci..

[6]  A. Levin Treating Disease at the RNA Level with Oligonucleotides. , 2019, The New England journal of medicine.

[7]  R. Deichmann,et al.  Evidence for peri-ictal blood–brain barrier dysfunction in patients with epilepsy , 2018, Brain : a journal of neurology.

[8]  S. Schorge,et al.  Spared CA1 pyramidal neuron function and hippocampal performance following antisense knockdown of microRNA‐134 , 2018, Epilepsia.

[9]  I. Scheffer,et al.  Epilepsy , 2018, Nature Reviews Disease Primers.

[10]  Rong-yong Man,et al.  MicroRNA-134 plasma levels before and after treatment with valproic acid for epilepsy patients , 2017, Oncotarget.

[11]  H. Hamer,et al.  “TORNADO” – Theranostic One-Step RNA Detector; microfluidic disc for the direct detection of microRNA-134 in plasma and cerebrospinal fluid , 2017, Scientific Reports.

[12]  K. Yoshikawa,et al.  Excitotoxicity-induced prostaglandin D2 production induces sustained microglial activation and delayed neuronal death[S] , 2017, Journal of Lipid Research.

[13]  O. Khorkova,et al.  Oligonucleotide therapies for disorders of the nervous system , 2017, Nature Biotechnology.

[14]  E. Schuman,et al.  Activity-dependent spatially localized miRNA maturation in neuronal dendrites , 2017, Science.

[15]  F. Rosenow,et al.  Potent Anti-seizure Effects of Locked Nucleic Acid Antagomirs Targeting miR-134 in Multiple Mouse and Rat Models of Epilepsy , 2016, Molecular therapy. Nucleic acids.

[16]  D. Goldstein,et al.  MicroRNAs in epilepsy: pathophysiology and clinical utility , 2016, The Lancet Neurology.

[17]  S. Danzer,et al.  MicroRNA-Mediated Downregulation of the Potassium Channel Kv4.2 Contributes to Seizure Onset. , 2016, Cell reports.

[18]  Guangchuang Yu,et al.  ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization. , 2016, Molecular bioSystems.

[19]  E. Jimenez-Mateos,et al.  microRNA targeting of the P2X7 purinoceptor opposes a contralateral epileptogenic focus in the hippocampus , 2015, Scientific Reports.

[20]  D. Walsh,et al.  Autoregulated paracellular clearance of amyloid-β across the blood-brain barrier , 2015, Science Advances.

[21]  J. DeFelipe,et al.  Antagomirs targeting microRNA-134 increase hippocampal pyramidal neuron spine volume in vivo and protect against pilocarpine-induced status epilepticus , 2015, Brain Structure and Function.

[22]  D. Kullmann,et al.  Gene therapy in epilepsy—is it time for clinical trials? , 2014, Nature Reviews Neurology.

[23]  Joshua L Plotkin,et al.  MicroRNA-128 Governs Neuronal Excitability and Motor Behavior in Mice , 2013, Science.

[24]  R. Ransohoff,et al.  Development, maintenance and disruption of the blood-brain barrier , 2013, Nature Medicine.

[25]  Henning Hermjakob,et al.  The Reactome pathway knowledgebase , 2013, Nucleic Acids Res..

[26]  S. Kauppinen,et al.  Treatment of HCV infection by targeting microRNA. , 2013, The New England journal of medicine.

[27]  T. Sano,et al.  Spatio-temporally restricted blood–brain barrier disruption after intra-amygdala kainic acid-induced status epilepticus in mice , 2013, Epilepsy Research.

[28]  D. V. Vactor,et al.  MicroRNAs Shape the Neuronal Landscape , 2012, Neuron.

[29]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[30]  Donncha F. O’Brien,et al.  Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects , 2012, Nature Medicine.

[31]  Donncha F. O’Brien,et al.  Reduced Mature MicroRNA Levels in Association with Dicer Loss in Human Temporal Lobe Epilepsy with Hippocampal Sclerosis , 2012, PloS one.

[32]  Guangchuang Yu,et al.  clusterProfiler: an R package for comparing biological themes among gene clusters. , 2012, Omics : a journal of integrative biology.

[33]  Henry Yang,et al.  Stage-specific modulation of cortical neuronal development by Mmu-miR-134. , 2011, Cerebral cortex.

[34]  P. Kemmeren,et al.  Functional Overlap and Regulatory Links Shape Genetic Interactions between Signaling Pathways , 2010, Cell.

[35]  Luc Buée,et al.  Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration. , 2010, Human molecular genetics.

[36]  M. Lindholm,et al.  Short locked nucleic acid antisense oligonucleotides potently reduce apolipoprotein B mRNA and serum cholesterol in mice and non-human primates , 2010, Nucleic acids research.

[37]  Alon Friedman,et al.  Blood–brain barrier breakdown as a therapeutic target in traumatic brain injury , 2010, Nature Reviews Neurology.

[38]  L. Tsai,et al.  A novel pathway regulates memory and plasticity via SIRT1 and miR-134 , 2010, Nature.

[39]  R. Dingledine,et al.  Astrocytes in the Epileptic Brain , 2008, Neuron.

[40]  S. Kauppinen,et al.  LNA-mediated microRNA silencing in non-human primates , 2008, Nature.

[41]  Shigeyoshi Itohara,et al.  Adenosine kinase is a target for the prediction and prevention of epileptogenesis in mice. , 2008, The Journal of clinical investigation.

[42]  E. Aronica,et al.  Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. , 2007, Brain : a journal of neurology.

[43]  Michael E. Greenberg,et al.  A brain-specific microRNA regulates dendritic spine development , 2006, Nature.

[44]  M. Oliver Landscape , 2005, Emerging Infectious Diseases.

[45]  T. Hand,et al.  Prostaglandin D2 mediates neuronal protection via the DP1 receptor , 2005, Journal of neurochemistry.

[46]  M. Sperling,et al.  Association between variation in the human KCNJ10 potassium ion channel gene and seizure susceptibility , 2004, Epilepsy Research.

[47]  A. Comert,et al.  Inhibition of pentylenetetrazol-induced seizures in rats by prostaglandin D2 , 1998, Epilepsy Research.

[48]  E. Rossignol,et al.  Involvement of cortical fast-spiking parvalbumin-positive basket cells in epilepsy. , 2016, Progress in brain research.

[49]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .