Exemplar based Generation and Data Augmentation using Exemplar VAEs

This paper combines the advantages of parametric and non-parametric, exemplar based generative models using variational inference, yielding a new generative model called Exemplar VAE. This is a variant of VAE with a non-parametric Parzen window prior in the latent space. To sample from it, one first draws a random exemplar from training data, then stochastically transforms the exemplar into a latent code and a new observation. We propose Retrieval Augmented Training (RAT) that uses approximate nearest neighbor search in the latent space to speed up training based on a novel lower bound on log marginal likelihood. To enhance generalization, model parameters are learned using exemplar leave-one-out and subsampling. Experiments demonstrate the effectiveness of Exemplar VAEs on density estimation and representation learning. Further, generative data augmentation using Exemplar VAEs on permutation invariant MNIST and Fashion MNIST reduces classification error from 1.23 to 0.69 and 8.56 to 8.16.

[1]  Max Welling,et al.  Improved Variational Inference with Inverse Autoregressive Flow , 2016, NIPS 2016.

[2]  Yang Li,et al.  A Forest from the Trees: Generation through Neighborhoods , 2020, AAAI.

[3]  Pieter Abbeel,et al.  Variational Lossy Autoencoder , 2016, ICLR.

[4]  David Vázquez,et al.  PixelVAE: A Latent Variable Model for Natural Images , 2016, ICLR.

[5]  Percy Liang,et al.  Generating Sentences by Editing Prototypes , 2017, TACL.

[6]  David M. Blei,et al.  Variational Inference: A Review for Statisticians , 2016, ArXiv.

[7]  Yann Dauphin,et al.  Language Modeling with Gated Convolutional Networks , 2016, ICML.

[8]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[9]  David P. Wipf,et al.  Diagnosing and Enhancing VAE Models , 2019, ICLR.

[10]  Mohammad Norouzi,et al.  Don't Blame the ELBO! A Linear VAE Perspective on Posterior Collapse , 2019, NeurIPS.

[11]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[12]  Adams Wei Yu,et al.  BLOCK-NORMALIZED GRADIENT METHOD: AN EMPIRICAL STUDY FOR TRAINING DEEP NEURAL NETWORK , 2018 .

[13]  Xi Chen,et al.  PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications , 2017, ICLR.

[14]  Shin Ishii,et al.  Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Abhishek Kumar,et al.  Regularized Autoencoders via Relaxed Injective Probability Flow , 2020, AISTATS.

[16]  Daniel Kunin,et al.  Loss Landscapes of Regularized Linear Autoencoders , 2019, ICML.

[17]  Xiaogang Wang,et al.  Deep Learning Face Attributes in the Wild , 2014, 2015 IEEE International Conference on Computer Vision (ICCV).

[18]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[19]  Samy Bengio,et al.  Generating Sentences from a Continuous Space , 2015, CoNLL.

[20]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[21]  Suman V. Ravuri,et al.  Classification Accuracy Score for Conditional Generative Models , 2019, NeurIPS.

[22]  Christopher Burgess,et al.  beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework , 2016, ICLR 2016.

[23]  Alexei A. Efros,et al.  Scene completion using millions of photographs , 2007, SIGGRAPH 2007.

[24]  Bernt Schiele,et al.  Generative Adversarial Text to Image Synthesis , 2016, ICML.

[25]  Alex Graves,et al.  Associative Compression Networks for Representation Learning , 2018, ArXiv.

[26]  Michael I. Jordan,et al.  Distance Metric Learning with Application to Clustering with Side-Information , 2002, NIPS.

[27]  Jonathon Shlens,et al.  Explaining and Harnessing Adversarial Examples , 2014, ICLR.

[28]  Heiga Zen,et al.  WaveNet: A Generative Model for Raw Audio , 2016, SSW.

[29]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[30]  Omer Levy,et al.  Generalization through Memorization: Nearest Neighbor Language Models , 2020, ICLR.

[31]  Quoc V. Le,et al.  AutoAugment: Learning Augmentation Strategies From Data , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[32]  Jörg Bornschein,et al.  Variational Memory Addressing in Generative Models , 2017, NIPS.

[33]  Jaime G. Carbonell,et al.  Normalized Gradient with Adaptive Stepsize Method for Deep Neural Network Training , 2017, ArXiv.

[34]  Bo Zhang,et al.  Learning to Generate with Memory , 2016, ICML.

[35]  Navdeep Jaitly,et al.  Adversarial Autoencoders , 2015, ArXiv.

[36]  Patrick Pérez,et al.  Object removal by exemplar-based inpainting , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[37]  Yoshua Bengio,et al.  NICE: Non-linear Independent Components Estimation , 2014, ICLR.

[38]  Roger B. Grosse,et al.  Isolating Sources of Disentanglement in Variational Autoencoders , 2018, NeurIPS.

[39]  Bernhard Schölkopf,et al.  From Variational to Deterministic Autoencoders , 2019, ICLR.

[40]  Daan Wierstra,et al.  Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.

[41]  Geoffrey E. Hinton,et al.  Regularizing Neural Networks by Penalizing Confident Output Distributions , 2017, ICLR.

[42]  Ole Winther,et al.  Ladder Variational Autoencoders , 2016, NIPS.

[43]  Sepp Hochreiter,et al.  GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium , 2017, NIPS.

[44]  Alexander A. Alemi,et al.  Deep Variational Information Bottleneck , 2017, ICLR.

[45]  Hideki Nakayama,et al.  Faster AutoAugment: Learning Augmentation Strategies using Backpropagation , 2019, ECCV.

[46]  Sung Yong Shin,et al.  On pixel-based texture synthesis by non-parametric sampling , 2006, Comput. Graph..

[47]  Andriy Mnih,et al.  Resampled Priors for Variational Autoencoders , 2018, AISTATS.

[48]  David J. Fleet,et al.  Exemplar VAEs for Exemplar based Generation and Data Augmentation , 2020, ArXiv.

[49]  William T. Freeman,et al.  Example-Based Super-Resolution , 2002, IEEE Computer Graphics and Applications.

[50]  Samy Bengio,et al.  Density estimation using Real NVP , 2016, ICLR.

[51]  Michael I. Jordan,et al.  An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.

[52]  Pascal Vincent,et al.  The Manifold Tangent Classifier , 2011, NIPS.

[53]  Sergey Ioffe,et al.  Rethinking the Inception Architecture for Computer Vision , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[54]  Max Welling,et al.  VAE with a VampPrior , 2017, AISTATS.

[55]  Yann LeCun,et al.  Regularization of Neural Networks using DropConnect , 2013, ICML.

[56]  Daan Wierstra,et al.  Towards Conceptual Compression , 2016, NIPS.

[57]  Li Fei-Fei,et al.  Perceptual Losses for Real-Time Style Transfer and Super-Resolution , 2016, ECCV.

[58]  Shakir Mohamed,et al.  Variational Inference with Normalizing Flows , 2015, ICML.

[59]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[60]  Ruslan Salakhutdinov,et al.  Importance Weighted Autoencoders , 2015, ICLR.

[61]  David G. Lowe,et al.  Scalable Nearest Neighbor Algorithms for High Dimensional Data , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[62]  George Tucker,et al.  Energy-Inspired Models: Learning with Sampler-Induced Distributions , 2019, NeurIPS.