DMS and MultiGLODS: black-box optimization benchmarking of two direct search methods on the bbob-biobj test suite
暂无分享,去创建一个
[1] Paul Dufossé,et al. Benchmarking MO-CMA-ES and COMO-CMA-ES on the bi-objective bbob-biobj testbed , 2019, GECCO.
[2] Anne Auger,et al. COCO: a platform for comparing continuous optimizers in a black-box setting , 2016, Optim. Methods Softw..
[3] Oswin Krause,et al. Unbounded Population MO-CMA-ES for the Bi-Objective BBOB Test Suite , 2016, GECCO.
[4] Anne Auger,et al. Biobjective Performance Assessment with the COCO Platform , 2016, ArXiv.
[5] Anne Auger,et al. COCO: Performance Assessment , 2016, ArXiv.
[6] Anne Auger,et al. COCO: The Experimental Procedure , 2016, ArXiv.
[7] Tobias Glasmachers,et al. Anytime Bi-Objective Optimization with a Hybrid Multi-Objective CMA-ES (HMO-CMA-ES) , 2016, GECCO.
[8] Luís N. Vicente,et al. Direct Multisearch for Multiobjective Optimization , 2011, SIAM J. Optim..
[9] A. L. Custódio,et al. MultiGLODS: global and local multiobjective optimization using direct search , 2018, Journal of Global Optimization.
[10] Dimo Brockhoff,et al. Benchmarking algorithms from the platypus framework on the biobjective bbob-biobj testbed , 2019, GECCO.