Overexpression of c‐type cytochrome, CymA in Shewanella oneidensis MR‐1 for enhanced bioelectricity generation and cell growth in a microbial fuel cell

[1]  J. R. Kim,et al.  Electrochemically enhanced microbial CO conversion to volatile fatty acids using neutral red as an electron mediator. , 2018, Chemosphere.

[2]  I. Michie,et al.  Anodic electro-fermentation of 3-hydroxypropionic acid from glycerol by recombinant Klebsiella pneumoniae L17 in a bioelectrochemical system , 2017, Biotechnology for Biofuels.

[3]  Korneel Rabaey,et al.  Redox dependent metabolic shift in Clostridium autoethanogenum by extracellular electron supply , 2016, Biotechnology for Biofuels.

[4]  J. R. Kim,et al.  Biologically activated graphite fiber electrode for autotrophic acetate production from CO2in a bioelectrochemical system , 2016 .

[5]  Michaela A. Teravest,et al.  CymA and Exogenous Flavins Improve Extracellular Electron Transfer and Couple It to Cell Growth in Mtr-Expressing Escherichia coli. , 2016, ACS synthetic biology.

[6]  Michaela A. Teravest,et al.  Transforming exoelectrogens for biotechnology using synthetic biology , 2016, Biotechnology and bioengineering.

[7]  Frauke Kracke,et al.  Microbial electron transport and energy conservation – the foundation for optimizing bioelectrochemical systems , 2015, Front. Microbiol..

[8]  Haichun Gao,et al.  Evidence for function overlapping of CymA and the cytochrome bc1 complex in the Shewanella oneidensis nitrate and nitrite respiration. , 2014, Environmental microbiology.

[9]  Sang-Eun Oh,et al.  Thionine increases electricity generation from microbial fuel cell using Saccharomyces cerevisiae and exoelectrogenic mixed culture , 2012, Journal of Microbiology.

[10]  J. Bye,et al.  A functional description of CymA, an electron-transfer hub supporting anaerobic respiratory flexibility in Shewanella. , 2012, The Biochemical journal.

[11]  R. Dinsdale,et al.  The effect of physico-chemically immobilized methylene blue and neutral red on the anode of microbial fuel cell , 2012, Biotechnology and Bioprocess Engineering.

[12]  D. G. McMillan,et al.  Menaquinone-7 Is Specific Cofactor in Tetraheme Quinol Dehydrogenase CymA , 2012, The Journal of Biological Chemistry.

[13]  M. Tien,et al.  Mapping the iron binding site(s) on the small tetraheme cytochrome of Shewanella oneidensis MR-1. , 2011, Biochemistry.

[14]  Stanton L. Martin,et al.  Involvement of Shewanella oneidensis MR-1 LuxS in Biofilm Development and Sulfur Metabolism , 2009, Applied and Environmental Microbiology.

[15]  D. Lovley The microbe electric: conversion of organic matter to electricity. , 2008, Current opinion in biotechnology.

[16]  R. V. van Spanning,et al.  The organisation of proton motive and non-proton motive redox loops in prokaryotic respiratory systems. , 2008, Biochimica et biophysica acta.

[17]  A. Spormann,et al.  Dissimilatory iron reduction in Escherichia coli: identification of CymA of Shewanella oneidensis and NapC of E. coli as ferric reductases , 2008, Molecular microbiology.

[18]  D. R. Bond,et al.  Shewanella secretes flavins that mediate extracellular electron transfer , 2008, Proceedings of the National Academy of Sciences.

[19]  J. Lloyd,et al.  Secretion of Flavins by Shewanella Species and Their Role in Extracellular Electron Transfer , 2007, Applied and Environmental Microbiology.

[20]  Anna Obraztsova,et al.  Current Production and Metal Oxide Reduction by Shewanella oneidensis MR-1 Wild Type and Mutants , 2007, Applied and Environmental Microbiology.

[21]  Alice Dohnalkova,et al.  Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[22]  T. Mehta,et al.  Extracellular electron transfer via microbial nanowires , 2005, Nature.

[23]  Andreas Kappler,et al.  Phenazines and Other Redox-Active Antibiotics Promote Microbial Mineral Reduction , 2004, Applied and Environmental Microbiology.

[24]  P. Dobbin,et al.  Characterization of the Shewanella oneidensis MR-1 Decaheme Cytochrome MtrA , 2003, Journal of Biological Chemistry.

[25]  L. Tisa,et al.  Melanin Production and Use as a Soluble Electron Shuttle for Fe(III) Oxide Reduction and as a Terminal Electron Acceptor by Shewanella algae BrY , 2002, Applied and Environmental Microbiology.

[26]  A. Beliaev,et al.  MtrC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR‐1 , 2001, Molecular microbiology.

[27]  C. Myers,et al.  Role for Outer Membrane Cytochromes OmcA and OmcB of Shewanella putrefaciens MR-1 in Reduction of Manganese Dioxide , 2001, Applied and Environmental Microbiology.

[28]  Dianne K. Newman,et al.  A role for excreted quinones in extracellular electron transfer , 2000, Nature.

[29]  D C White,et al.  Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. , 1999, International journal of systematic bacteriology.

[30]  A. Beliaev,et al.  Shewanella putrefaciens mtrB Encodes an Outer Membrane Protein Required for Fe(III) and Mn(IV) Reduction , 1998 .

[31]  C. Myers,et al.  Isolation and sequence of omcA, a gene encoding a decaheme outer membrane cytochrome c of Shewanella putrefaciens MR-1, and detection of omcA homologs in other strains of S. putrefaciens. , 1998, Biochimica et biophysica acta.

[32]  C. Myers,et al.  Cloning and sequence of cymA, a gene encoding a tetraheme cytochrome c required for reduction of iron(III), fumarate, and nitrate by Shewanella putrefaciens MR-1 , 1997, Journal of bacteriology.

[33]  C. Myers,et al.  Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1 , 1992, Journal of bacteriology.

[34]  K. Nealson,et al.  Bacterial Manganese Reduction and Growth with Manganese Oxide as the Sole Electron Acceptor , 1988, Science.