A Low-Voltage Mobility-Based Frequency Reference for Crystal-Less ULP Radios

The design of a 100 kHz frequency reference based on the electron mobility in a MOS transistor is presented. The proposed low-voltage low-power circuit requires no off-chip components, making it suitable for application in wireless sensor networks (WSN). After a single-point calibration, the spread of its output frequency is less than 1.1% (3sigma) over the temperature range from -22degC to 85degC . Fabricated in a baseline 65 nm CMOS technology, the frequency reference circuit occupies 0.11 mm2 and draws 34 muA from a 1.2 V supply at room temperature.

[1]  M. Vertregt,et al.  Test structures for investigation of metal coverage effects on MOSFET matching , 1997, 1997 IEEE International Conference on Microelectronic Test Structures Proceedings.

[2]  K. Makinwa,et al.  A low-voltage mobility-based frequency reference for crystal-less ULP radios , 2008, ESSCIRC 2008 - 34th European Solid-State Circuits Conference.

[3]  K. Halonen,et al.  A 3 /spl mu/W, 2 MHz CMOS frequency reference for capacitive sensor applications , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[4]  Michiel Steyaert,et al.  A fully-integrated Wienbridge topology for ultra-low-power 86ppm/°C 65nm CMOS 6MHz clock reference with amplitude regulation , 2008, ESSCIRC 2008 - 34th European Solid-State Circuits Conference.

[5]  R. Gregor,et al.  On the relationship between topography and transistor matching in an analog CMOS technology , 1992 .

[6]  J.M. Conrad,et al.  A survey of energy harvesting sources for embedded systems , 2008, IEEE SoutheastCon 2008.

[7]  B. Nauta,et al.  Analog circuits in ultra-deep-submicron CMOS , 2005, IEEE Journal of Solid-State Circuits.

[8]  John A. McNeill,et al.  Jitter in oscillators with 1/f noise sources , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[9]  Kofi A. A. Makinwa,et al.  Impulse based scheme for crystal-less ULP radios , 2008, 2008 IEEE International Symposium on Circuits and Systems.

[10]  Maarten Vertregt,et al.  Characterization of systematic MOSFET current factor mismatch caused by metal CMP dummy structures , 2001 .

[11]  Paul K. Wright,et al.  Powering Ambient Intelligent Networks , 2005, Ambient Intelligence.

[12]  Willy Sansen,et al.  A CMOS temperature-compensated current reference , 1988 .

[13]  Michael S. McCorquodale,et al.  A 0.5-to-480MHz Self-Referenced CMOS Clock Generator with 90ppm Total Frequency Error and Spread-Spectrum Capability , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[14]  Kofi A. A. Makinwa,et al.  Interface Electronics for a CMOS Electrothermal Frequency-Locked-Loop , 2008, IEEE J. Solid State Circuits.

[15]  G.C.M. Meijer,et al.  Temperature sensors and voltage references implemented in CMOS technology , 2001, IEEE Sensors Journal.

[16]  Johan H. Huijsing,et al.  Micropower CMOS temperature sensor with digital output , 1996, IEEE J. Solid State Circuits.

[17]  Jan M. Rabaey,et al.  Ultra-Low Power Integrated Wireless Nodes for Sensor and Actuator Networks , 2005, Ambient Intelligence.

[18]  Kofi A. A. Makinwa,et al.  A CMOS smart temperature sensor with a batch-calibrated inaccuracy of ±0.25°C (3σ) from −70°C to 130°C , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[19]  F. Ayazi,et al.  Process and temperature compensation in a 7-MHz CMOS clock oscillator , 2006, IEEE Journal of Solid-State Circuits.

[20]  Jan M. Rabaey,et al.  A 2GHz 52 μW Wake-Up Receiver with -72dBm Sensitivity Using Uncertain-IF Architecture , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[21]  R. A. Blauschild An integrated time reference , 1994, Proceedings of IEEE International Solid-State Circuits Conference - ISSCC '94.