Parameter Estimation of Type-II Hybrid Censored Weighted Exponential Distribution

A hybrid censoring scheme is a mixture of Type-I and Type-II censoring schemes. We study the estimation of parameters of weighted exponential distribution based on Type-II hybrid censored data. By applying the EM algorithm, maximum likelihood estimators are evaluated. Using Fisher information matrix, asymptotic confidence intervals are provided. By applying Markov chain Monte Carlo techniques, Bayes estimators, and corresponding highest posterior density confidence intervals of parameters are obtained. Monte Carlo simulations are performed to compare the performances of the different methods, and one dataset is analyzed for illustrative purposes.

[1]  Debasis Kundu,et al.  A new class of weighted exponential distributions , 2009 .

[2]  Debasis Kundu,et al.  Hybrid censoring: Models, inferential results and applications , 2013, Comput. Stat. Data Anal..

[3]  T. Bjerkedal Acquisition of resistance in guinea pigs infected with different doses of virulent tubercle bacilli. , 1960, American journal of hygiene.

[4]  Debasis Kundu,et al.  On hybrid censored Weibull distribution , 2007 .

[5]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[6]  D. Lindley,et al.  Approximate Bayesian methods , 1980 .

[7]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[8]  Narayanaswamy Balakrishnan,et al.  Estimation of parameters from progressively censored data using EM algorithm , 2002 .

[9]  T. Louis Finding the Observed Information Matrix When Using the EM Algorithm , 1982 .

[10]  B. Epstein Truncated Life Tests in the Exponential Case , 1954 .

[11]  Debasis Kundu,et al.  Inference Based on Type-II Hybrid Censored Data From a Weibull Distribution , 2008, IEEE Transactions on Reliability.

[12]  D. Kundu,et al.  EXPONENTIATED EXPONENTIAL FAMILY: AN ALTERNATIVE TO GAMMA AND WEIBULL DISTRIBUTIONS , 2001 .

[13]  Boualem Boashash,et al.  The bootstrap and its application in signal processing , 1998, IEEE Signal Process. Mag..

[14]  N. Balakrishnan,et al.  Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution , 2003 .

[15]  R. Dykstra,et al.  A Confidence Interval for an Exponential Parameter from a Hybrid Life Test , 1982 .

[16]  Bong-Jin Yum,et al.  Development of r,T hybrid sampling plans for exponential lifetime distributions , 1996 .

[17]  Irwin Guttman,et al.  Bayesian analysis of hybrid life tests with exponential failure times , 1987 .

[18]  G. K. Bhattacharyya,et al.  Exact confidence bounds for an exponential parameter under hybrid censoring , 1987 .

[19]  Debasis Kundu,et al.  Estimating the Parameters of the Generalized Exponential Distribution in Presence of Hybrid Censoring , 2009 .

[20]  Debasis Kundu,et al.  Hybrid censoring schemes with exponential failure distribution , 1998 .

[21]  Nader Ebrahimi Prediction intervals for future failures in the exponential distribution under hybrid censoring , 1992 .

[22]  Arezou Habibirad,et al.  Estimating the Parameters of the Generalized Exponential Distribution Based on Unified Hybrid Censored , 2009 .

[23]  Nader Ebrahimi Estimating the parameters of an exponential distribution from a hybrid life test , 1986 .

[24]  Debasis Kundu,et al.  Parameter estimation of the hybrid censored log-normal distribution , 2011 .

[25]  Ming-Hui Chen,et al.  Monte Carlo Estimation of Bayesian Credible and HPD Intervals , 1999 .

[26]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[27]  Luc Devroye,et al.  A simple algorithm for generating random variates with a log-concave density , 1984, Computing.