Nanosurface Chemistry on Size-Selected Silicon Clusters

Studies of the chemistry that occurs on the nanosurfaces of size-selected silicon clusters reveal a number of fascinating qualitative similarities to the behavior of bulk surfaces. However, silicon clusters containing up to 70 atoms appear to be much less reactive than bulk silicon surfaces. This unexpected result suggests that these large silicon clusters are not just small crystals of bulk silicon, but have much more compact geometric structures

[1]  M. Jarrold,et al.  Chemistry of semiconductor clusters: Reactions of Si sub n sup + (n = 11-50) with C sub 2 H sub 4 show evidence for numerous structural isomers , 1990 .

[2]  H. Wagner,et al.  Dissociative chemisorption of H2O on Si(100) and Si(111) - a vibrational study , 1982 .

[3]  M. Jarrold,et al.  Collision-induced dissociation of silicon cluster ions , 1988 .

[4]  Stephen J. Riley,et al.  Reactions of iron clusters with hydrogen. II. Composition of the fully hydrogenated products , 1985 .

[5]  K. Fujiwara Localized bond model for H2O chemisorption on silicon surfaces , 1981 .

[6]  George,et al.  Oxidation kinetics of Si(111) 7 x 7 in the submonolayer regime. , 1989, Physical review. B, Condensed matter.

[7]  M. Jarrold,et al.  Chemistry of semiconductor clusters: A study of the reactions of size selected Si+n (n=3–24) with C2H4 using selected ion drift tube techniques , 1989 .

[8]  R. Smalley,et al.  Photodissociation of semiconductor positive cluster ions , 1988 .

[9]  Y. Chabal Hydride formation on the Si(100): H2O surface , 1984 .

[10]  Phillips,et al.  Chemical reactivity and covalent-metallic bonding of Sin+ (n=11-25) clusters. , 1989, Physical review letters.

[11]  S. George,et al.  The Decomposition of NH3 on Si (111) 7x7 Studied Using Laser-Induced Thermal Desorption , 1989, Microphysics of Surfaces, Beams and Adsorbates.

[12]  M. Bowers Gas phase ion chemistry , 1979 .

[13]  Winston A. Saunders,et al.  Electronic Shell Structure and Abundances of Sodium Clusters , 1984 .

[14]  M. Jarrold,et al.  Chemistry of semiconductor clusters: Large silicon clusters are much less reactive towards oxygen than the bulk , 1990 .

[15]  Ming L. Yu,et al.  Influence of the 7×7-1×1 phase transition on the sticking of oxygen on Si(111) , 1989 .

[16]  K. Raghavachari Theoretical studies on silicon clusters , 1990 .

[17]  Avouris,et al.  Reaction of Si(100) with NH3: Rate-limiting steps and reactivity enhancement via electronic excitation. , 1986, Physical review letters.

[18]  M. Nishijima,et al.  Vibrational electron energy loss spectroscopy of the Si(111)(7×7)–H2O(D2O) system , 1986 .

[19]  Olof Echt,et al.  Magic Numbers for Sphere Packings: Experimental Verification in Free Xenon Clusters , 1981 .

[20]  G. Pacchioni,et al.  Silicon and germanium clusters. A theoretical study of their electronic structures and properties , 1986 .

[21]  J. Yoshinobu,et al.  Interaction of ethylene with the Si(111)(7×7) surface- A vibrational study , 1986 .

[22]  G. C. Nieman,et al.  Chemical probes of metal cluster structure: Reactions of iron clusters with hydrogen, ammonia, and water , 1988 .

[23]  Shayegan,et al.  Observation of a metastable precursor for adsorption of oxygen on Si(111) and the activation energy for chemisorption. , 1988, Physical review. B, Condensed matter.

[24]  Avouris,et al.  Photoemission studies of the reactions of ammonia and N atoms with Si(100)-(2 x 1) and Si(111)-(7 x 7) surfaces. , 1988, Physical review. B, Condensed matter.

[25]  Phillips,et al.  Surface and thermodynamic interatomic force fields for silicon clusters and bulk phases. , 1990, Physical review letters.

[26]  M. Jarrold,et al.  Chemistry of semiconductor clusters: a survey of the reactions of Si25+ using low-energy ion beam techniques , 1989 .

[27]  W. R. Creasy,et al.  Studies of gas-phase reactions of silicon cation clusters, Sin+, using Fourier transform mass spectrometry , 1987 .

[28]  Eldridge,et al.  Real-time study of oxygen reaction on Si(100). , 1987, Physical review letters.

[29]  Miranda,et al.  Early stages of the alkali-metal-promoted oxidation of silicon. , 1988, Physical review. B, Condensed matter.

[30]  Krishnan Raghavachari,et al.  Bonding and stabilities of small silicon clusters: A theoretical study of Si7–Si10 , 1988 .

[31]  R. Berry Introductory lecture. Clusters, melting, freezing and phase transitions , 1990 .

[32]  G. W. Lemire,et al.  Evidence of structural isomerism in small niobium clusters , 1988 .

[33]  Hamers,et al.  Imaging chemical-bond formation with the scanning tunneling microscope: NH3 dissociation on Si(001). , 1987, Physical review letters.

[34]  C. R. Chris Wang,et al.  Optical absorption spectroscopy of sodium clusters as measured by collinear molecular beam photodepletion , 1990 .

[35]  Wang,et al.  Valence-bond model for silicon force fields. , 1990, Physical review. B, Condensed matter.

[36]  Freeman,et al.  Photofragmentation of Mass-Resolved Si2-12+ clusters. , 1985, Physical review letters.

[37]  M. Jarrold,et al.  Interaction of silicon cluster ions with ammonia: The kinetics , 1990 .

[38]  Andreoni,et al.  Equilibrium structures and finite temperature properties of silicon microclusters from ab initio molecular-dynamics calculations. , 1988, Physical review letters.

[39]  A. Castleman,et al.  Gas-Phase Clusters: Spanning the States of Matter , 1988, Science.

[40]  R. Hamers,et al.  The reaction of Si(100) 2×1 with NO and NH3: The role of surface dangling bonds , 1987 .

[41]  T. George,et al.  Large silicon clusters: confirmation of Phillips' conjecture , 1988 .

[42]  R. Smalley,et al.  FT‐ICR probes of silicon cluster chemistry: The special behavior of Si+39 , 1987 .

[43]  Biswas,et al.  Simulated annealing of silicon atom clusters in Langevin molecular dynamics. , 1986, Physical review. B, Condensed matter.

[44]  M. Jarrold,et al.  Studies of the chemistry of large semiconductor cluster ions , 1990 .

[45]  Kelly,et al.  Ethylene on cleaved silicon: High-resolution electron-energy-loss study of an unusual adsorption system in the temperature range 85-300 K. , 1987, Physical review. B, Condensed matter.

[46]  Y. Xing,et al.  Orientation dependent adsorption on a cylindrical silicon crystal , 1985 .

[47]  J. Schaefer,et al.  Water adsorption on cleaved silicon surfaces , 1985 .

[48]  P. Avouris,et al.  Atom-resolved surface chemistry using scanning tunneling microscopy. , 1988, Physical review letters.

[49]  R. Rosenberg,et al.  The bonding of hydrogen on water‐dosed Si(111) , 1986 .

[50]  J. Dieleman,et al.  An in situ infrared study of the room temperature oxidation of silicon with atomic and molecular oxygen , 1989 .

[51]  H. Wagner,et al.  Vibrational study of the initial stages of the oxidation of Si(111) and Si(100) surfaces , 1982 .

[52]  Demuth,et al.  Water on Si(111)7 x 7: An in situ study with electron-energy-loss and photoemission spectroscopies. , 1986, Physical review. B, Condensed matter.

[53]  Marvin L. Cohen,et al.  THEORY OF STATIC STRUCTURAL PROPERTIES, CRYSTAL STABILITY, AND PHASE TRANSFORMATIONS: APPLICATION TO Si AND Ge , 1982 .

[54]  T. Engel,et al.  Kinetics of the adsorption of O2 and of the desorption of SiO on Si(100): A molecular beam, XPS, and ISS study , 1987 .