On the Automorphism Group of Integral Circulant Graphs

The integral circulant graph $X_n (D)$ has the vertex set $Z_n = \{0, 1,\ldots$, $n{-}1\}$ and vertices $a$ and $b$ are adjacent, if and only if $\gcd(a{-}b$, $n)\in D$, where $D = \{d_1,d_2, \ldots, d_k\}$ is a set of divisors of $n$. These graphs play an important role in modeling quantum spin networks supporting the perfect state transfer and also have applications in chemical graph theory. In this paper, we deal with the automorphism group of integral circulant graphs and investigate a problem proposed in [W. Klotz, T. Sander, Some properties of unitary Cayley graphs , Electr. J. Comb. 14 (2007), #R45]. We determine the size and the structure of the automorphism group of the unitary Cayley graph $X_n (1)$ and the disconnected graph $X_n (d)$. In addition, based on the generalized formula for the number of common neighbors and the wreath product, we completely characterize the automorphism groups $Aut (X_n (1, p))$ for $n$ being a square-free number and $p$ a prime dividing $n$, and $Aut (X_n (1, p^k))$ for $n$ being a prime power.

[1]  Torsten Sander,et al.  Some Properties of Unitary Cayley Graphs , 2007, Electron. J. Comb..

[2]  Elena D. Fuchs Longest Induced Cycles in Circulant Graphs , 2005, Electron. J. Comb..

[3]  Frank K. Hwang,et al.  A survey on multi-loop networks , 2003, Theor. Comput. Sci..

[4]  R. Balakrishnan The energy of a graph , 2004 .

[5]  Igor E. Shparlinski,et al.  On the energy of some circulant graphs , 2006 .

[6]  Yan-Quan Feng,et al.  Automorphism groups of Cayley digraphs , 2008 .

[7]  Joy Morris Automorphism Groups of Circulant Graphs — a Survey , 2004, math/0411302.

[8]  M. Muzychuk A Solution of the Isomorphism Problem for Circulant Graphs , 2004 .

[9]  Edward Dobson,et al.  Automorphism Groups of Metacirculant Graphs of Order a Product of Two Distinct Primes , 2006, Combinatorics, Probability and Computing.

[10]  Aleksandar Ili' c Distance spectra and Distance energy of Integral Circulant Graphs , 2011 .

[11]  W. Haemers,et al.  Strongly Regular Graphs with Maximal Energy , 2007 .

[12]  Wasin So REMARKS ON SOME GRAPHS WITH LARGE NUMBER OF EDGES , 2009 .

[13]  Igor E. Shparlinski,et al.  On the average energy of circulant graphs , 2008 .

[14]  Chris D. Godsil,et al.  Periodic Graphs , 2008, Electron. J. Comb..

[15]  I. Kovács,et al.  Automorphism groups of Cayley digraphs of . , 2009 .

[16]  H. N. Ramaswamy,et al.  On the Energy of Unitary Cayley Graphs , 2009, Electron. J. Comb..

[17]  Pedro Berrizbeitia,et al.  On cycles in the sequence of unitary Cayley graphs , 2004, Discret. Math..

[18]  M. Klin,et al.  Automorphism groups of rational circulant graphs through the use of Schur rings , 2010, 1008.0751.

[19]  Jean Fonlupt,et al.  Graph Theory in Paris , 2007 .

[20]  Aleksandar Ilic,et al.  On the clique number of integral circulant graphs , 2009, Appl. Math. Lett..

[21]  Simone Severini,et al.  Parameters of Integral Circulant Graphs and Periodic Quantum Dynamics , 2007 .

[22]  István Kovács,et al.  On automorphisms of circulant digraphs on pm vertices, p an odd prime , 2002 .

[23]  Milan B. Tasic,et al.  Perfect state transfer in integral circulant graphs , 2009, Appl. Math. Lett..

[24]  Ivan Gutman,et al.  Triply Equienergetic Graphs , 2010 .

[25]  Wasin So,et al.  Integral circulant graphs , 2006, Discret. Math..

[26]  Cai Heng Li On isomorphisms of connected Cayley graphs , 1998, Discret. Math..

[27]  Reza Akhtar,et al.  On the Unitary Cayley Graph of a Finite Ring , 2009, Electron. J. Comb..

[28]  Torsten Sander,et al.  Integral Cayley Graphs over Abelian Groups , 2010, Electron. J. Comb..

[29]  Milan B. Tasic,et al.  Some classes of integral circulant graphs either allowing or not allowing perfect state transfer , 2009, Appl. Math. Lett..

[30]  Ivan Gutman HYPERENERGETIC MOLECULAR GRAPHS , 1999 .

[31]  I. Gutman The Energy of a Graph: Old and New Results , 2001 .

[32]  Joy Morris,et al.  On automorphism groups of circulant digraphs of square-free order , 2005, Discret. Math..

[33]  Aleksandar Ilic,et al.  On the chromatic number of integral circulant graphs , 2010, Comput. Math. Appl..