A hierarchical construction of LR meshes in 2D

We describe a construction of LR-spaces whose bases are composed of locally linearly independent B-splines which also form a partition of unity. The construction conforms to given refinement requirements associated to subdomains. In contrast to the original LR-paper (Dokken et al., 2013) and similarly to the hierarchical B-spline framework (Forsey and Bartels, 1988) the construction of the mesh is based on a priori choice of a sequence of nested tensor B-spline spaces. The paper discusses bivariate LR splines with the non-nested support (N2S) property.Conditions on LR mesh refinement for preserving this property are presented.A hierarchical construction for LR meshes with the N2S property is proposed and analyzed.We prove the completeness of LR splines on the resulting hierarchical meshes.

[1]  Tom Lyche,et al.  Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..

[2]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[3]  Trond Kvamsdal,et al.  Isogeometric analysis using LR B-splines , 2014 .

[4]  Bert Jüttler,et al.  On the completeness of hierarchical tensor-product B-splines , 2014, J. Comput. Appl. Math..

[5]  Nicholas S. North,et al.  T-spline simplification and local refinement , 2004, SIGGRAPH 2004.

[6]  Giancarlo Sangalli,et al.  Analysis-Suitable T-splines are Dual-Compatible , 2012 .

[7]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[8]  Bernard Mourrain,et al.  Dimensions and bases of hierarchical tensor-product splines , 2014, J. Comput. Appl. Math..

[9]  Bernard Mourrain,et al.  On the dimension of spline spaces on planar T-meshes , 2010, Math. Comput..

[10]  Hendrik Speleers,et al.  THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..

[11]  K. Höllig Finite element methods with B-splines , 1987 .

[12]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[13]  Andrea Bressan,et al.  Some properties of LR-splines , 2013, Comput. Aided Geom. Des..

[14]  Jiansong Deng,et al.  Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..

[15]  Lyle Ramshaw,et al.  Blossoms are polar forms , 1989, Comput. Aided Geom. Des..