Sensing the Environment

Organisms at all levels of complexity are constantly subject to variations in factors impinging on them from the external environment. It is obviously in the interest of the organism to match as closely as possible its activity to these variations. Any mismatch can be remedied by the organism according to one of three general strategies (Fig. 1), namely, (1) modification of the environment, (2) modification of the organism itself, or (3) migration to a more favorable environment.

[1]  M. Simon,et al.  Bacterial Flagella: Polarity of Elongation , 1970, Science.

[2]  J. S. Parkinson Behavioral genetics in bacteria. , 1977, Annual review of genetics.

[3]  M. Simon,et al.  Genetic Analysis of Bacteriophage Mu-Induced Flagellar Mutants in Escherichia coli , 1973, Journal of bacteriology.

[4]  B. Stocker,et al.  Measurements of rate of mutation of flagellar antigenic phase in Salmonella typhi-murium , 1949, Epidemiology and Infection.

[5]  H. Berg,et al.  A protonmotive force drives bacterial flagella. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[6]  T. Yokota,et al.  Requirement of Adenosine 3′, 5′-Cyclic Phosphate for Flagella Formation in Escherichia coli and Salmonella typhimurium , 1970, Journal of bacteriology.

[7]  M. Simon,et al.  Operon controlling motility and chemotaxis in E. coli , 1976, Nature.

[8]  J. M. Hood,et al.  On the evolution of beta-galactosidase. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[9]  J. Adler,et al.  Chemomechanical coupling without ATP: the source of energy for motility and chemotaxis in bacteria. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[10]  R. Macnab,et al.  The gradient-sensing mechanism in bacterial chemotaxis. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[11]  A biochemical mechanism for bacterial chemotaxis. , 1977, Journal of theoretical biology.

[12]  J. S. Parkinson,et al.  Complementation analysis and deletion mapping of Escherichia coli mutants defective in chemotaxis , 1978, Journal of bacteriology.

[13]  R. Macnab Bacterial flagella rotating in bundles: a study in helical geometry. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[14]  M. Simon,et al.  Localization of proteins controlling motility and chemotaxis in Escherichia coli , 1977, Journal of bacteriology.

[15]  S. Ward Chemotaxis by the nematode Caenorhabditis elegans: identification of attractants and analysis of the response by use of mutants. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[16]  M. Simon,et al.  Genetic analysis of Escherichia coli K-12 region I flagellar mutants , 1977, Journal of bacteriology.

[17]  D. Koshland,et al.  Reversal of Flagellar Rotation in Monotrichous and Peritrichous Bacteria: Generation of Changes in Direction , 1974, Journal of Bacteriology.

[18]  H. Berg,et al.  Dynamic properties of bacterial flagellar motors , 1974, Nature.

[19]  D E Koshland,et al.  Intrinsic and extrinsic light responses of Salmonella typhimurium and Escherichia coli , 1975, Journal of Bacteriology.

[20]  W. Boos The properties of the galactose-binding protein, the possible chemoreceptor for galactose chemotaxis in Escherichia coli. , 1974, Antibiotics and chemotherapy.

[21]  H. Hotani,et al.  Growth-saturation in vitro of Salmonella flagella. , 1974, Journal of molecular biology.

[22]  D. Koshland,et al.  Identification of a protein methyltransferase as the cheR gene product in the bacterial sensing system. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[23]  R. Macnab,et al.  Inversion of a behavioral response in bacterial chemotaxis: explanation at the molecular level. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Sally H. Zigmond,et al.  Leukocyte locomotion and chemotaxis. New methods for evaluation, and demonstration of a cell-derived chemotactic factor. , 1973 .

[25]  D. Koshland,et al.  Sensory electrophysiology of bacteria: relationship of the membrane potential to motility and chemotaxis in Bacillus subtilis. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[26]  J. Henrichsen,et al.  Bacterial surface translocation: a survey and a classification. , 1972, Bacteriological reviews.

[27]  R. Freter,et al.  The role of chemotaxis in the ecology of bacterial pathogens of mucosal surfaces , 1977, Nature.

[28]  J. Adler,et al.  Sensory transduction in Escherichia coli: role of a protein methylation reaction in sensory adaptation. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[29]  J. Adler,et al.  Sensory transduction in Escherichia coli: two complementary pathways of information processing that involve methylated proteins. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[30]  J. B. Armstrong An S-adenosylmethionine requirement for chemotaxis in Escherichia coli. , 1972, Canadian journal of microbiology.

[31]  R. Macnab Bacterial motility and chemotaxis: the molecular biology of a behavioral system. , 1978, CRC critical reviews in biochemistry.

[32]  P. Läuger Ion transport and rotation of bacterial flagella , 1977, Nature.

[33]  J. Adler,et al.  "Decision"-Making in Bacteria: Chemotactic Response of Escherichia coli to Conflicting Stimuli , 1974, Science.

[34]  D E Koshland,et al.  Receptor interactions in a signalling system: competition between ribose receptor and galactose receptor in the chemotaxis response. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[35]  M. Simon,et al.  Identification of the structural gene for the hook subunit protein of Escherichia coli flagella , 1978, Journal of bacteriology.

[36]  C. Calladine Design requirements for the construction of bacterial flagella. , 1976, Journal of theoretical biology.

[37]  J. Adler,et al.  Isolation of glutamic acid methyl ester from an Escherichia coli membrane protein involved in chemotaxis. , 1977, The Journal of biological chemistry.

[38]  D. Brown,et al.  Temporal stimulation of chemotaxis in Escherichia coli. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[39]  H. Berg Chemotaxis in bacteria. , 1975, Annual review of biophysics and bioengineering.

[40]  J. Shioi,et al.  Motility in Bacillus subtilis driven by an artificial protonmotive force , 1977, FEBS letters.

[41]  D. Koshland,et al.  Evidence for an S-adenosylmethionine requirement in the chemotactic behavior of Salmonella typhimurium. , 1975, Journal of Molecular Biology.

[42]  S. Asakura Polymerization of flagellin and polymorphism of flagella. , 1970, Advances in biophysics.

[43]  M. Holwill,et al.  Propulsion of micro-organisms by three-dimensional flagellar waves. , 1972, Journal of theoretical biology.

[44]  J. Adler,et al.  The sensing of chemicals by bacteria. , 1976, Scientific American.

[45]  T Iino,et al.  Genetics of structure and function of bacterial flagella. , 1977, Annual review of genetics.

[46]  J. Adler,et al.  Properties of Mutants in Galactose Taxis and Transport , 1974, Journal of bacteriology.

[47]  F. Seymour,et al.  Chemotactic responses by motile bacteria. , 1973, Journal of general microbiology.

[48]  M. Simon,et al.  Identification of polypeptides necessary for chemotaxis in Escherichia coli , 1977, Journal of bacteriology.

[49]  F. Harold Membranes and Energy Transduction in Bacteria1 1Abbreviations: Δψ, membrane potential; ΔpH, pH gradient; Δp, proton-motive force. These are related by: Δp = Δψ - (23RT/F) ΔpH ≅ Δψ - 60 ΔpH. ANS, l-anilino-8-naphthalene sulfonate; DCCD, N, N'-dicyclohexylcarbodiimide; CCCP, carbonylcyanide-m-chloroph , 1977 .

[50]  M. Simon,et al.  Recombinational switch for gene expression. , 1977, Science.

[51]  J. Adler,et al.  Methylation of a membrane protein involved in bacterial chemotaxis. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[52]  H. Berg,et al.  Physics of chemoreception. , 1977, Biophysical journal.

[53]  A. Klug THE DESIGN OF SELF-ASSEMBLING SYSTEMS OF EQUAL UNITS , 1967 .

[54]  H. Berg,et al.  Transient response to chemotactic stimuli in Escherichia coli. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[55]  J. Adler,et al.  Negative Chemotaxis in Escherichia coli , 1974, Journal of bacteriology.

[56]  J. Lengeler Mutations affecting transport of the hexitols D-mannitol, D-glucitol, and galactitol in Escherichia coli K-12: isolation and mapping , 1975, Journal of bacteriology.

[57]  D E Koshland,et al.  Quantitative analysis of bacterial migration in chemotaxis. , 1972, Nature: New biology.

[58]  G. Ordal Calcium ion regulates chemotactic behaviour in bacteria , 1977, Nature.

[59]  H. Berg,et al.  Bacteria Swim by Rotating their Flagellar Filaments , 1973, Nature.

[60]  P. P. van der Werf,et al.  Identification of a gamma-glutamyl methyl ester in bacterial membrane protein involved in chemotaxis. , 1977, The Journal of biological chemistry.

[61]  G L Hazelbauer,et al.  Chemotaxis Toward Sugars in Escherichia coli , 1973, Journal of bacteriology.

[62]  M. Simon,et al.  Flagellar rotation and the mechanism of bacterial motility , 1974, Nature.

[63]  D. Koshland,et al.  Use of a distant reporter group as evidence for a conformational change in a sensory receptor. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[64]  D E Koshland,et al.  Properties of the galactose binding protein of Salmonella typhimurium and Escherichia coli. , 1977, Biochemistry.

[65]  R. Macnab,et al.  Persistence as a concept in the motility of chemotactic bacteria. , 1973, Journal of mechanochemistry & cell motility.

[66]  J. Adler,et al.  Fine Structure and Isolation of the Hook-Basal Body Complex of Flagella from Escherichia coli and Bacillus subtilis , 1971, Journal of bacteriology.

[67]  C. R. Calldine Change of waveform in bacterial flagella : the role of mechanics at the molecular level , 1978 .

[68]  J. Adler,et al.  A method for measuring the motility of bacteria and for comparing random and non-random motility. , 1967, Journal of general microbiology.

[69]  Robert Mesibov,et al.  Chemotaxis Toward Amino Acids in Escherichia coli , 1972, Journal of bacteriology.

[70]  H. Suzuki,et al.  Absence of messenger ribonucleic acid specific for flagellin in non-flagellate mutants of Salmonella. , 1975, Journal of molecular biology.

[71]  J. Adler,et al.  Phosphotransferase-system enzymes as chemoreceptors for certain sugars in Escherichia coli chemotaxis. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[72]  W. Seabrook Neurobiological Contributions to Understanding Insect Pheromone Systems , 1978 .

[73]  M. Simon,et al.  Chemotaxis in Escherichia coli: methylation of che gene products. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[74]  M. Simon,et al.  Flagellar Assembly Mutants in Escherichia coli , 1972, Journal of bacteriology.

[75]  S. Asakura,et al.  Helical transformations of Salmonella flagella in vitro. , 1976, Journal of molecular biology.

[76]  J. Adler Chemotaxis in Bacteria , 1966, Science.

[77]  L. Shapiro Differentiation in the Caulobacter cell cycle. , 1976, Annual review of microbiology.

[78]  H. Berg,et al.  Chemotaxis in Escherichia coli analysed by Three-dimensional Tracking , 1972, Nature.

[79]  D. Apirion,et al.  Ribonuclease III is involved in motility of Escherichia coli , 1978, Journal of bacteriology.

[80]  J. S. Parkinson,et al.  Functional homology of chemotaxis genes in Escherichia coli and Salmonella typhimurium , 1979, Journal of bacteriology.

[81]  J. Adler,et al.  Change in membrane potential during bacterial chemotaxis. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[82]  J. Adler,et al.  Chemoreceptors in bacteria. , 1969, Science.

[83]  N. Kleckner Translocatable elements in procaryotes , 1977, Cell.

[84]  T. Suzuki,et al.  Incomplete flagellar structures in nonflagellate mutants of Salmonella typhimurium , 1978, Journal of bacteriology.

[85]  D. Koshland,et al.  A protein methylesterase involved in bacterial sensing. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[86]  T. Iino Polarity of flagellar growth in salmonella. , 1969, Journal of general microbiology.

[87]  D E Koshland,et al.  Common Mechanism for Repellents and Attractants in Bacterial Chemotaxis , 1973, Science.

[88]  M. Simon,et al.  Characterization of Escherichia coli Flagellar Mutants That are Insensitive to Catabolite Repression , 1974, Journal of bacteriology.

[89]  T. Lino Assembly of Salmonella flagellin in vitro and in vivo. , 1974 .

[90]  D. Koshland Sensory Response in Bacteria , 1977 .

[91]  D. Koshland,et al.  Quantitation of the sensory response in bacterial chemotaxis. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[92]  M. C. Chang,et al.  Effect of Prostaglandin F2α on the Early Pregnancy of Rabbits , 1972, Nature.

[93]  J. Adler,et al.  Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli , 1974, Nature.

[94]  Further studies on the binding of maltose to the maltose-binding protein of Escherichia coli. , 1976, European journal of biochemistry.

[95]  P. Bennett,et al.  Structure of straight flagella from a mutant Salmonella. , 1972, Journal of molecular biology.

[96]  M. Bitensky,et al.  Cellular responses to cyclic AMP. , 1973, Progress in biophysics and molecular biology.

[97]  R M Macnab,et al.  Normal-to-curly flagellar transitions and their role in bacterial tumbling. Stabilization of an alternative quaternary structure by mechanical force. , 1977, Journal of molecular biology.